화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.4, 413-420, August, 2015
PTMSP-ZIF 복합막의 기체투과 특성
Gas Permeation Properties of PTMSP-ZIF Composite Membrane
E-mail:
초록
기체 투과도가 우수한 PTMSP [Poly(1-trimethylsilyl-1-propyne)] 고분자막의 양립현상(trade-off relationship)을 개선하기 위해서 ZIF-8 (zeolitic imidazolate framework)을 첨가하여 PTMSP-ZIF 복합막을 제조하였다. PTMSP-ZIF 복합막은 PTMSP 에 ZIF-8의 함량을 0, 5, 10, 20, 30, 40 wt%로 하여 제조하였고, PTMSP-ZIF 복합막의 ZIF-8 함량 변화에 따른 H2, N2, CO2, CH4의 기체투과 특성을 알아보았다. 기체투과 실험에서 ZIF-8의 함량 5∼30 wt%까지는 ZIF 함량이 증가함에 따라 기체투과도는 증가하였고, 그 이후에는 감소하였다. PTMSP-ZIF 30 wt% 복합막에서 CO2의 기체투과도가 76080 barrer로 가장 큰 기체투과도를 보였고, PTMSP-ZIF 20 wt% 복합막에서 선택도(CO2/N2)는 8.2로 가장 높은 값을 보였다. 선택도(H2/N2)와 선택도(CO2/CH4)는 ZIF-8 함량 10∼40 wt% 범위에서 PTMSP 단일막과 거의 비슷한 값을 보였다. 전체적으로 PTMSP-ZIF 복합막들은 PTMSP 단일막보다 선택도는 감소되지 않으면서 투과도는 향상된 결과를 보였다.
PTMSP-ZIF composite membranes were prepared by the addition of zeolitic imidazolate framework (ZIF-8) into poly (1-trimethylsilyl-1-propyne) (PTMSP) having high gas permeability to improve trade-off relationship of the polymer membrane. PTMSP-ZIF composite membranes were prepared with different amounts of ZIF-8; 0, 5, 10, 20, 30 and 40 wt%. Gas permeation properties for H2, N2, CO2, and CH4 were investigated by increasing the amount of ZIF-8 in the PTMSP. The gas permeability of PTMSP-ZIF composite membranes within 5∼30 wt% of ZIF-8 contents increased as ZIF-8 contents went up and decreased thereafter. The gas permeability for CO2 showed the maximum value of 76080 barrer at 30 wt% of ZIF-8 content and PTMSP-ZIF composite membrane containing 20 wt% of ZIF-8 content had the highest selectivity (CO2/N2) with the value of 8.2. The selectivity (H2/N2) and selectivity (CO2/CH4) were almost the same as PTMSP in the range 10∼40 wt% of the ZIF-8. Overall, PTMSP-ZIF composite membranes resulted in maintained selectivity and increased permeability compared to those of PTMSP membranes.
  1. Vu DQ, Koros WJ, Miller SJ, J. Membr. Sci., 211(2), 311 (2003)
  2. Li T, Pan Y, Peinemann KV, Lai Z, J. Membr. Sci., 425-426, 235 (2013)
  3. Noble RD, J. Membr. Sci., 378(1-2), 393 (2011)
  4. Zhang C, Dai Y, Johnson JR, Karvan O, Koros WJ, J. Membr. Sci., 389, 34 (2012)
  5. Bae TH, Lee JS, Qiu WL, Koros WJ, Jones CW, Nair S, Angew. Chem.-Int. Edit., 49, 9863 (2010)
  6. Car A, Stropnik C, Peinemann KV, Desalination, 200(1-3), 424 (2006)
  7. Park KS, Ni Z, Cote AP, Choi JY, Huang RD, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM, P. Natl. Acad. Sci. USA, 103, 10186 (2006)
  8. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM, Accounts Chem. Res., 43, 58 (2010)
  9. Lu G, Hupp JT, J. Am. Chem. Soc., 132(23), 7832 (2010)
  10. Dai Y, Johnson JR, Karvan O, Sholl DS, Koros WJ, J. Membr. Sci., 401, 76 (2012)
  11. Liu XL, Li YS, Zhu GQ, Ban YJ, Xu LY, Yang WS, Angew. Chem.-Int. Edit., 50, 10636 (2011)
  12. Askari M, Chung TS, J. Membr. Sci., 444, 173 (2013)
  13. Nafisi V, Hagg MB, J. Membr. Sci., 459, 244 (2014)
  14. Hara N, Yoshimune M, Negishi H, Haraya K, Hara S, Yamaguchi T, J. Membr. Sci., 450, 215 (2014)
  15. Pan Y, Li T, Lestari G, Lai Z, J. Membr. Sci., 390-391, 93 (2012)
  16. Bushell AF, Attfield MP, Mason CR, Budd PM, Yampolskii Y, Starannikova L, Rebrov A, Bazzarelli F, Bernardo P, Jansen JC, Lanc M, Friess K, Shantarovich V, Gustov V, Isaeva V, J. Membr. Sci., 427, 48 (2013)
  17. Nagai K, Kanehashi S, Tabei S, Nakagawa T, J. Membr. Sci., 251(1-2), 101 (2005)
  18. Merkel TC, Bondar V, Nagai K, Freeman BD, J. Polym. Sci. B: Polym. Phys., 38(2), 273 (2000)
  19. Pinnau I, Toy LG, J. Membr. Sci., 116(2), 199 (1996)
  20. Borisov IL, Malakhov AO, Khotimsky VS, Litvinova EG, Finkelshtein ES, Ushakov NV, Volkov VV, J. Membr. Sci., 466, 322 (2014)
  21. Kelman SD, Raharjo RD, Bielawski CW, Freeman BD, Polymer, 49(13-14), 3029 (2008)
  22. Consolati G, Pegoraro M, Quasso F, Severini F, Polymer, 42(3), 1265 (2001)
  23. Ghisellini M, Quinzi M, Baschetti MG, Doghieri F, Costa G, Sarti GC, Desalination, 149(1-3), 441 (2002)
  24. Matteucci S, Kusuma VA, Sanders D, Swinnea S, Freeman BD, J. Membr. Sci., 307(2), 196 (2008)
  25. Merkel TC, He ZJ, Pinnau I, Freeman BD, Meakin P, Hill AJ, Macromolecules, 36(18), 6844 (2003)
  26. De Sitter K, Winberg P, D'Haen J, Dotremont C, Leysen R, Martens JA, Mullens S, Maurer FHJ, Vankelecom IFJ, J. Membr. Sci., 278(1-2), 83 (2006)
  27. Lee SH, Kim MZ, Cho CH, Han MH, J. Membr. Sci., 23(5), 367 (2013)
  28. Hu Y, Kazemian H, Rohani S, Huang Y, Song Y, Chem. Commun., 47, 12694 (2011)
  29. Bouma RH, Checchetti A, Chidichimo G, Drioli E, J. Membr. Sci., 128(2), 141 (1997)
  30. Barrer RM, Barrie JA, Rogers MG, J. Polym. Sci. A: Polym. Chem., 1, 2565 (1963)
  31. Sun HL, Lu LY, Chen X, Jiang ZY, Appl. Surf. Sci., 254(17), 5367 (2008)
  32. Li T, Pan Y, Peinemann KV, Lai Z, J. Membr. Sci., 425-426, 235 (2013)
  33. Hwang SW, Chung YC, Chun BC, Lee SJ, Polym.(Korea), 28(5), 374 (2004)
  34. Song Q, Nataraj SK, Roussenova MV, Tan JC, Hughes DJ, Li W, Bourgoin P, Alam MA, Cheetham AK, Al-Muhtasebd SA, Sivaniah E, Energy Environ. Sci., 5, 8359 (2012)
  35. Venna SR, Carreon MA, J. Am. Chem. Soc., 132(1), 76 (2010)
  36. Hao L, Li P, Yang TX, Chung TS, J. Membr. Sci., 436, 221 (2013)
  37. Naghsh M, Sadeghi M, Moheb A, Chenar MP, Mohagheghian M, J. Membr. Sci., 423, 97 (2012)
  38. Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)