화학공학소재연구정보센터
Macromolecular Research, Vol.23, No.8, 719-725, August, 2015
Lithium salt of carboxymethyl cellulose as an aqueous binder for thick graphite electrode in lithium ion batteries
E-mail:
The increase in a graphite electrode thickness is an inevitable to achieve the high energy density of lithium ion batteries (LIBs). However, the increment of electrode thickness results in a significant degradation of the electrochemical performances due to a poor kinetic associated with lithium ion caused by a long lithium ion diffusion length and large polarization. To improve the kinetic associated with lithium ion, the lithium salt of carboxymethyl cellulose (Li-CMC) is introduced as a binder. The Li-CMC is synthesized from sodium salt of carboxymethyl cellulose (Na-CMC) via simple two-step method. The thick graphite electrode prepared with Li-CMC exhibits much improved electrochemical performances, including a specific capacity and a cycle performance, compared to that with Na-CMC. The voltage profiles, electrochemical impedance spectroscopy (EIS), and rate capabilities results indicate that these improvements are attributed to improved lithium ion kinetics and low polarization by employing Li-CMC binder.
  1. Lee SW, Choi SW, Jo SM, Chin BD, Kim DY, Lee KY, J. Power Sources, 163(1), 41 (2006)
  2. Kleiner K, Nature, 441, 1046 (2006)
  3. Sato Y, Nagayama K, Sato Y, Takamura T, J. Power Sources, 189(1), 490 (2009)
  4. Wen SH, Hou ZF, Han KL, J. Phys. Chem. C, 113, 18436 (2009)
  5. Stein A, Nat. Nanotechnol., 6(5), 262 (2011)
  6. Martha SK, Nanda J, Veith GM, Dudney NJ, J. Power Sources, 199, 220 (2012)
  7. Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D, Angew. Chem.-Int. Edit., 48, 8559 (2009)
  8. Tarascon JM, Armand M, Nature, 414, 359 (2001)
  9. Bruce PG, Scrosati B, Tarascon JM, Angew. Chem.-Int. Edit., 47, 2930 (2008)
  10. Boukamp BA, Lesh GC, Huggins RA, J. Electrochem. Soc., 128, 725 (1981)
  11. Gabrisch H, Wilcox J, Doeff MM, Electrochem. Solid State Lett., 11(3), A25 (2008)
  12. Campana FP, Buqa H, Novak P, Kotz R, Siegenthaler H, Electrochem. Commun., 10, 1590 (2008)
  13. Kostecki R, McLarnon F, J. Power Sources, 119, 550 (2003)
  14. Markervich E, Salitra G, Levi MD, Aurbach D, J. Power Sources, 146(1-2), 146 (2005)
  15. Qiu L, Shao ZQ, Yang MS, Wang WJ, Wang FJ, Wan JL, Wang JQ, Bi YD, Duan HT, Cellulose, 21, 615 (2014)
  16. Qiu L, Shao ZQ, Liu ML, Wang JQ, Li PF, Zhao M, Carbohydr. Polym., 102, 986 (2014)
  17. Xie L, Zhao L, Wan JL, Shao ZQ, Wang FJ, Lv SY, J. Electrochem. Soc., 159(4), A499 (2012)
  18. Qiu L, Shao ZQ, Wang DX, Wang WJ, Wang FJ, Wang JQ, Carbohydr. Polym., 111, 588 (2014)
  19. Li J, Lewis RB, Dahn JR, Electrochem. Solid State Lett., 10(2), A17 (2007)
  20. Lee JH, Kim JS, Kim YC, Zang DS, Choi YM, Il Park W, Paik U, Electrochem. Solid State Lett., 11(10), A175 (2008)
  21. Lee JH, Paik U, Hackley VA, Choi YM, J. Electrochem. Soc., 152(9), A1763 (2005)
  22. Drofenik J, Gaberscek M, Dominko R, Poulsen FW, Mogensen M, Pejovnik S, Jamnik J, Electrochim. Acta, 48(7), 883 (2003)
  23. Qiu L, Shao Z, Wang W, Wang F, Wang D, Zhou Z, Xiang P, Xu C, Rsc Adv., 4, 24859 (2014)
  24. Chang YC, Jong JH, Fey GTK, J. Electrochem. Soc., 147(6), 2033 (2000)
  25. Kim GY, Park YJ, Jung KH, Yang DJ, Lee JW, Kim HG, J. Appl. Electrochem., 38(10), 1477 (2008)