Polymer(Korea), Vol.39, No.5, 769-774, September, 2015
초음파 분무를 이용한 PEO-PPO-PEO 삼중블록공중합체 미립자의 형성
Formation of PEO-PPO-PEO Triblock Copolymer Microdroplets by Ultrasonic Atomization
E-mail:
초록
Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) 삼중 공중합체의 수용액으로부터 초음파 분무를 이용하여 PEO-PPO-PEO의 미립자를 제조하였다. 입자가 형성되는 경향은 용액의 농도와 온도에 따라 민감하게 변하였으며, 특히 같은 농도에서 용액의 온도가 다른 경우에(10 oC vs. 24 oC) 입자화 거동이 현저하게 달라졌다. 10 oC인 경우에 용액의 농도가 3에서 12.5 wt%로 증가할수록 구형 입자 크기는 증가하고 입자 개수는 감소되었으나 24 oC에서는 9 wt%에서 입자수가 현저히 감소되었고 12.5 wt%에서는 입자가 전혀 형성되지 않았다. 이러한 경향은 온도 상승에 의한 PEO-PPO-PEO 수용액의 젤 구조 형성과 밀접한 관련이 있는 것으로 이해되었고, 전단 점도가 동일하여도 용액의 탄성 정도에 따라 입자화 거동이 달라질 수 있음을 확인하였다. 음파를 이용한 고분자의 미립자 제조에 있어서 주어진 농도와 온도 범위에서 나타난 입자화 거동을 열역학적 모델과 표면 탄성의 관점에서 설명하였다.
Ultrasonic atomization was conducted to produce microparticles of poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO (PEO-PPO-PEO) triblock copolymer from the aqueous solutions. A particular interest of this study was to investigate how the droplet formation of PEO-PPO-PEO solutions is affected by the concentration and temperature of the solutions. At the given range of concentrations, the atomization behaviors processed at temperatures of 10 and 24 oC were significantly different. As the concentration increased from 3 to 12.5 wt% at 10 oC, the particle sizes increased and the number of particles decreased. In case of 24 oC, however, the number of particles was greatly reduced at the concentration of 9 wt% and no droplet was found in 12.5 wt% solution. It is noted that the temperature dependency of the atomization behavior of PEO-PPO-PEO solutions is closely associated with the temperature-driven gel formation and the subsequent increase of elasticity in the solution. The overall atomization tendency found at different temperatures and concentrations is explained based on the thermodynamic model and the role of surface elasticity in PEO-PPO-PPO solutions.
- Mohanraj VJ, Chen Y, Trop. J. Pharm. Res., 5, 561 (2006)
- Suh WH, Suslick KS, J. Am. Chem. Soc., 127(34), 12007 (2005)
- Kurosawa M, Futami A, Higuchi T, International Conference on Solid-State Sensors and Actuators, Chicago, June 16-19 (1997).
- Alvarez M, Friend J, Yeo LY, Nanotechnology, 19, 455103 (2008)
- Vukasinovic B, Smith MK, Glezer A, Phys. Fluids, 19, 012104 (2007)
- Cohn D, Sonik A, Garty S, Biomaterials, 6, 1168 (2005)
- Chun KW, Lee BJ, Kim SH, Park TG, Biomaterials, 26, 3319 (2005)
- Stefanescu EA, Schexnailder PJ, Dundigalla A, Negulescu II, Schmidt G, Polymer, 47(21), 7339 (2006)
- Loizou E, Butler P, Porcar L, Kesselman E, Talmon Y, Dundigalla A, Schmidt G, Macromolecules, 38(6), 2047 (2005)
- Kim Y, Kim H, Polym. Eng. Sci., 51(12), 2446 (2011)
- Rajan R, Pandit AB, Ultrasonics, 39, 235 (2001)
- Lang RJ, J. Acoust. Soc. Am., 34, 6 (1962)
- Avvaru B, Patil MN, Gogate PR, Pandit AB, Ultrasonics, 44, 146 (2006)
- Kim H, Lee J, Won YY, Ultrasonics, 61, 20 (2015)
- Mason TJ, Lorimer JP, Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing, Weinheim, Wiley-VCH, 2002.
- Desai PR, Jain NJ, Sharma RK, Bahadur P, Colloids Surf. A: Physicochem. Eng. Asp., 178, 57 (2001)
- Wen XG, Verrall RE, J. Colloid Interface Sci., 196(2), 215 (1997)
- Avvaru B, Patil MN, Gogate PR, Pandit AB, Ultrasonics, 44, 146 (2006)
- Alexandridis P, Holzwarth JF, Hatton TA, Macromolecules, 27(9), 2414 (1994)
- Lopes JR, Loh W, Langmuir, 14(4), 750 (1998)
- Lenaerts V, Triqueneaux C, Quarton M, Rieg-Falson F, Couvreur P, Int. J. Pharm., 39, 121 (1987)
- Mortensen K, Pedersen JS, Macromolecules, 26, 805 (1993)
- Dumortier G, Grossiord JL, Agnely F, Chaumeil JC, Pharmaceut. Res., 23, 2709 (2006)
- Krezanoski JZ, U.S. Patent 4,188,373 (1980).
- Edsman K, Carlfors J, Petersson R, Eur. J. Pharm. Sci., 6, 105 (1998)
- Park EK, Song KW, Ann. Trans. Nordic Rheol. Soc., 19, 147 (2011)
- Kretzchmar G, Li J, Miller R, Motschmann H, Mohwald H, Colloids Surf. A: Physicochem. Eng. Asp., 114, 277 (1996)
- Bomqvistt BR, Warnheim T, Claesson PM, Langmuir, 21(14), 6373 (2005)
- Kim C, Yu H, Langmuir, 19(10), 4460 (2003)