화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.5, 788-794, September, 2015
산화그래핀이 포함된 폴리(N-이소프로필아크릴아미드) 하이드로젤의 기계적, 열적 특성 연구
Investigation of Mechanical and Thermal Properties of Poly(N-isopropylacrylamide) Hydrogels Containing Graphene Oxide
E-mail:,
초록
본 연구에서는 산화그래핀(graphene oxide, GO)을 포함하는 폴리(N-이소프로필아크릴아미드)(poly(N-isopropylacrylamide),PNIPAm) 하이드로젤의 기계적 물성을 측정하고, 이를 GO의 분산상태와 다공성 구조의 변화를 통해 설명하였다. 유동계를 이용하여 GO의 함량에 따른 저장탄성률을 측정한 결과, 3 중량%의 GO를 포함할 때 가장 높은 값을 보였다. 주사전자현미경을 통해 3 중량%의 GO를 포함한 시료가 가장 작은 공극을 가지며 다공성 구조가 조밀하게 배열된 것을 확인하였다. 온도에 따른 저장탄성률을 팽윤비와 비교한 결과, PNIPAm/GO 시료가 상변화를 거치며 저장탄성률이 급격하게 증가하는 것을 확인하였고 이를 내부구조의 변화와 연관지어 설명하였다. 본 연구를 통해 GO가 포함된 하이드로젤의 기계적 강도 향상을 확인하였고, 이를 GO의 분산상태에 따른 다공성 내부구조의 변화와 밀접한 관련이 있음을 결론지었다.
In this study, we have prepared poly(N-isopropylacrylamide) (PNIPAm) hydrogel containing graphene oxide (GO) by a simple mixing of a solution containing the monomers and aqueous GO through radical polymerization. Mechanical property of the PNIPAm/GO was investigated by measuring storage modulus using a rheometer. PNIPAm containing 3 wt% of GO showed the highest storage modulus among the samples of various GO contents. In this GO content, the exfoliated GO sheets were well dispersed in the hydrogel matrix, enhacing the mechanical property of the hydrogel. We found that the dense porous structure consisted of small channels was formed in the PNIPAm containing 3 wt% of GO. The storage moduli of the PNIPAm/GO hydrogels were rapidly increased near the lower critical solution temperature of the PNIPAm during heating. We concluded that the mechanical property of PNIPAm/GO was closely related to the porous structure of the hydrogels that was affected by the dispersion state of GO in the matrix.
  1. Yoon J, Bian P, Kim J, McCarthy TJ, Hayward RC, Angew. Chem.-Int. Edit., 51, 7146 (2012)
  2. Lee E, Lee H, Yoo SI, Yoon J, ACS Appl. Mater Interfaces, 6, 16949 (2014)
  3. Kim D, Lee HS, Yoon J, RSC Adv., 4, 25379 (2014)
  4. Kim D, Lee E, Lee HS, Yoon J, Sci. Rep., 5, 7646 (2015)
  5. Watanabe H, Sol. Energy Mater. Sol. Cells, 54(1), 203 (1998)
  6. Schild H, Prog. Polym. Sci, 17, 163 (1992)
  7. Lee CC, Lee J, Polym.(Korea), 38(5), 626 (2014)
  8. Gutowska A, Bae YH, Feijen J, Kim SW, J. Control. Release, 22, 95 (1992)
  9. Chung J, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T, J. Control. Release, 62, 115 (1999)
  10. Yamato M, Akiyama Y, Kobayashi J, Yang J, Kikuchi A, Okano T, Prog. Polym. Sci, 32, 1123 (2007)
  11. Schmaljohann D, Oswald J, Jorgensen B, Nitschke M, Beyerlein D, Werner C, Biomacromolecules, 4(6), 1733 (2003)
  12. Yang J, Kim B, Polym.(Korea), 37(3), 262 (2013)
  13. Patel VR, Amiji MM, Pharm. Res., 13, 588 (1996)
  14. Satarkar NS, Zhang W, Eitel RE, Hilt JZ, Lab Chip, 9, 1773 (2009)
  15. Moschou EA, Peteu SF, Bachas LG, Madou MJ, Daunert S, Chem. Mater., 16, 2499 (2004)
  16. Banet P, Griesmar P, Serfaty S, Vidal F, Jaouen V, Le Huerou JY, J. Phys. Chem. B, 113(45), 14914 (2009)
  17. Haraguchi K, Takehisa T, Fan S, Macromolecules, 35(27), 10162 (2002)
  18. Zhu MF, Liu Y, Sun B, Zhang W, Liu XL, Yu H, Zhang Y, Kuckling D, Adler HJP, Macromol. Rapid Commun., 27(13), 1023 (2006)
  19. Fan HL, Wang LL, Zhao KK, Li N, Shi ZJ, Ge ZG, Jin ZX, Biomacromolecules, 11(9), 2345 (2010)
  20. Fang M, Wang K, Lu H, Yang Y, Nutt S, J. Mater. Chem., 19, 7098 (2009)
  21. Zu SZ, Han BH, J. Phys. Chem., 113, 13651 (2009)
  22. Zhao X, Zhang QH, Chen DJ, Lu P, Macromolecules, 43(5), 2357 (2010)
  23. Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, Malucelli G, Marceddu S, Sechi M, Sanna V, Mariani A, J. Mater. Chem., 21, 8727 (2011)
  24. Ajayan PM, Stephan O, Colliex C, Trauth D, Science, 265(5176), 1212 (1994)
  25. Moniruzzaman M, Winey KI, Macromolecules, 39(16), 5194 (2006)
  26. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
  27. Yoon J, Cai S, Suo Z, Hayward RC, Soft Matter, 6, 6004 (2010)