화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.9, 1744-1748, September, 2015
Enhancement of CH4-water mass transfer using methyl-modified mesoporous silica nanoparticles
E-mail:,
Surface-modified mesoporous silica nanoparticle (MSN) with methyl groups was used to enhance the CH4-water volumetric mass transfer coefficient (kLa) and the solubility of CH4 in water. Two types of samples were tested: unmodified MSN and methyl-modified MSN. The mass transfer for each type of sample was measured every 20 s by gas chromatography. The results showed that the methyl-modified MSN, which have both hydrophobic and hydrophilic properties on the surface, exhibited higher CH4-water volumetric mass transfer coefficient and solubility in water. The dissolved concentrations of CH4 were enhanced by 10.7% and 27.8%, and the volumetric mass transfer coefficient were enhanced by 28.6% and 84.7%, respectively, by using unmodified MSN and methyl-modified MSN.
  1. Hamelinck CN, Faaij APC, J. Power Sources, 111(1), 1 (2002)
  2. Lynd LR, Annu. Rev. Energ. Environ., 21, 403 (1996)
  3. Henstra M, Sipma J, Rinzema A, Stams AJM, Curr. Opin. Biotechnol., 18, 200 (2007)
  4. Do YS, Smeenk J, Broer KM, Kisting CJ, Brown R, Heindel TJ, Bobik TA, DiSpirito AA, Biotechnol. Bioeng., 97(2), 279 (2007)
  5. Worden RM, Bredwell MD, Grethlein AJ, Fuels Chem. Biomass., 666, 320 (1997)
  6. Jianga H, Chenb Y, Jianga P, Zhanga C, Smithc TJ, Murrellb JC, Xinga XH, Biochem. Eng. J., 49, 277 (2010)
  7. Semrau JD, DiSpirito AA, Yoon S, Fems Microbiol. Rev., 34, 496 (2010)
  8. Wiesenburg DA, Guinasso NL, J. Chem. Eng. Data, 24, 4 (1979)
  9. Ungerman AJ, Heindel TJ, Biotechnol. Prog., 23(3), 613 (2007)
  10. Karimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, Pourmand MR, Iran J. Environ. Health Sci. Eng., 10, 6 (2013)
  11. Dagaonkar MV, Beenackers AACM, Pangarkar VG, Chem. Eng. J., 81(1-3), 203 (2001)
  12. Azher NE, Gourich B, Vial C, Bellhaj MS, Bouzidi A, Barkaoui M, Ziyad M, Biochem. Eng. J., 23, 161 (2005)
  13. Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 48(6), 3206 (2009)
  14. Hu B, Pacek AW, Stitt EH, Nienow AW, Chem. Eng. Sci., 60(22), 6371 (2005)
  15. Olle B, Bucak S, Holmes TC, Bromberg L, Hatton TA, Wang DIC, Ind. Eng. Chem. Res., 45(12), 4355 (2006)
  16. Kim YK, Park SE, Lee H, Yun JY, Bioresour. Technol., 159, 446 (2014)
  17. Kluytmans JHJ, van Wachem BGM, Kuster BFM, Schouten JC, Chem. Eng. Sci., 58(20), 4719 (2003)
  18. Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 47(20), 7881 (2008)
  19. Ruthiya KC, van der Schaaf J, Kuster BFM, Schouten JC, Chem. Eng. J., 96(1-3), 55 (2003)
  20. Gentile F, Oleschko H, Veverka P, Machon V, Paglianti A, Bujalski W, Etchells AW III, Nienow AW, Can. J. Chem. Eng., 81, 3 (2003)
  21. Schumacher C, Gonzalez J, Perez-Mendoza M, Wright PA, Seaton NA, Ind. Eng. Chem. Res., 45(16), 5586 (2006)
  22. Lee KR, Kim S, Kang DH, Lee JI, Lee YJ, Kim WS, Cho DH, Lim HB, Kim J, Hur NH, Chem. Mater., 20, 6738 (2008)
  23. Yang J, Chen J, Song J, Vib. Spectrosc., 50, 178 (2009)
  24. Buchel G, Unger KK, Matsumoto A, Tsutsumi K, Adv. Mater., 10(13), 1036 (1998)
  25. Nawrocki J, J. Chromatogr. A, 779, 29 (1997)
  26. Moutafchieva D, Popova D, Dimitrova M, Tchaoushev S, J. Chem. Technol. Metall., 48, 351 (2013)
  27. Park S, Yasin M, Kim D, Park HD, Kang CM, Kim DJ, Chang IS, J. Ind. Microbiol. Biotechnol., 40, 995 (2013)
  28. Littlejohns JV, Daugulis AJ, Chem. Eng. J., 129(1-3), 67 (2007)