Korean Journal of Chemical Engineering, Vol.32, No.9, 1744-1748, September, 2015
Enhancement of CH4-water mass transfer using methyl-modified mesoporous silica nanoparticles
E-mail:,
Surface-modified mesoporous silica nanoparticle (MSN) with methyl groups was used to enhance the CH4-water volumetric mass transfer coefficient (kLa) and the solubility of CH4 in water. Two types of samples were tested: unmodified MSN and methyl-modified MSN. The mass transfer for each type of sample was measured every 20 s by gas chromatography. The results showed that the methyl-modified MSN, which have both hydrophobic and hydrophilic properties on the surface, exhibited higher CH4-water volumetric mass transfer coefficient and solubility in water. The dissolved concentrations of CH4 were enhanced by 10.7% and 27.8%, and the volumetric mass transfer coefficient were enhanced by 28.6% and 84.7%, respectively, by using unmodified MSN and methyl-modified MSN.
Keywords:Methane (CH4) Gas;Mass Transfer;Gas Fermentation;Mesoporous Silica Nanoparticle (MSN);Surface Modification
- Hamelinck CN, Faaij APC, J. Power Sources, 111(1), 1 (2002)
- Lynd LR, Annu. Rev. Energ. Environ., 21, 403 (1996)
- Henstra M, Sipma J, Rinzema A, Stams AJM, Curr. Opin. Biotechnol., 18, 200 (2007)
- Do YS, Smeenk J, Broer KM, Kisting CJ, Brown R, Heindel TJ, Bobik TA, DiSpirito AA, Biotechnol. Bioeng., 97(2), 279 (2007)
- Worden RM, Bredwell MD, Grethlein AJ, Fuels Chem. Biomass., 666, 320 (1997)
- Jianga H, Chenb Y, Jianga P, Zhanga C, Smithc TJ, Murrellb JC, Xinga XH, Biochem. Eng. J., 49, 277 (2010)
- Semrau JD, DiSpirito AA, Yoon S, Fems Microbiol. Rev., 34, 496 (2010)
- Wiesenburg DA, Guinasso NL, J. Chem. Eng. Data, 24, 4 (1979)
- Ungerman AJ, Heindel TJ, Biotechnol. Prog., 23(3), 613 (2007)
- Karimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, Pourmand MR, Iran J. Environ. Health Sci. Eng., 10, 6 (2013)
- Dagaonkar MV, Beenackers AACM, Pangarkar VG, Chem. Eng. J., 81(1-3), 203 (2001)
- Azher NE, Gourich B, Vial C, Bellhaj MS, Bouzidi A, Barkaoui M, Ziyad M, Biochem. Eng. J., 23, 161 (2005)
- Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 48(6), 3206 (2009)
- Hu B, Pacek AW, Stitt EH, Nienow AW, Chem. Eng. Sci., 60(22), 6371 (2005)
- Olle B, Bucak S, Holmes TC, Bromberg L, Hatton TA, Wang DIC, Ind. Eng. Chem. Res., 45(12), 4355 (2006)
- Kim YK, Park SE, Lee H, Yun JY, Bioresour. Technol., 159, 446 (2014)
- Kluytmans JHJ, van Wachem BGM, Kuster BFM, Schouten JC, Chem. Eng. Sci., 58(20), 4719 (2003)
- Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 47(20), 7881 (2008)
- Ruthiya KC, van der Schaaf J, Kuster BFM, Schouten JC, Chem. Eng. J., 96(1-3), 55 (2003)
- Gentile F, Oleschko H, Veverka P, Machon V, Paglianti A, Bujalski W, Etchells AW III, Nienow AW, Can. J. Chem. Eng., 81, 3 (2003)
- Schumacher C, Gonzalez J, Perez-Mendoza M, Wright PA, Seaton NA, Ind. Eng. Chem. Res., 45(16), 5586 (2006)
- Lee KR, Kim S, Kang DH, Lee JI, Lee YJ, Kim WS, Cho DH, Lim HB, Kim J, Hur NH, Chem. Mater., 20, 6738 (2008)
- Yang J, Chen J, Song J, Vib. Spectrosc., 50, 178 (2009)
- Buchel G, Unger KK, Matsumoto A, Tsutsumi K, Adv. Mater., 10(13), 1036 (1998)
- Nawrocki J, J. Chromatogr. A, 779, 29 (1997)
- Moutafchieva D, Popova D, Dimitrova M, Tchaoushev S, J. Chem. Technol. Metall., 48, 351 (2013)
- Park S, Yasin M, Kim D, Park HD, Kang CM, Kim DJ, Chang IS, J. Ind. Microbiol. Biotechnol., 40, 995 (2013)
- Littlejohns JV, Daugulis AJ, Chem. Eng. J., 129(1-3), 67 (2007)