Korean Journal of Chemical Engineering, Vol.32, No.9, 1918-1923, September, 2015
New α-Zn2V2O7/carbon nanotube nanocomposite for supercapacitors
E-mail:
This study synthesized α-Zn2V2O7 nanopowders using a hydrothermal approach followed by annealing treatment. The resulting powders were then mixed with multi-walled carbon nanotubes and electrochemically characterized as new nanocomposite electrodes for supercapacitors. The structure and surface morphology of the powders were characterized by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Plus, the capacitive behavior of the composite electrodes was evaluated by cyclic voltammetry and galvanostatic charge-discharge cycles in different molar aqueous KCl solutions. The α-Zn2V2O7/multi-walled carbon nanotube composite electrodes were prepared using three different ratios and screened for their use in supercapacitors. As a result, the α-Zn2V2O7/multi-walled carbon nanotube composite electrode with a 1 : 2 ratio was identified as the best electrode with a specific
capacitance value of 44.8 F g-1 in 0.5M KCl. Notwithstanding, all the tested composite electrodes demonstrated an excellent cycle stability and showed a less than 4% change in their specific capacitance values when compared to the initial values.
- Burke A, J. Power Sources, 91(1), 37 (2000)
- Conway BE, Electrochemical supercapacitors: Scientific fundamentals and technological applications, Kluwer Academic/Plenum Publisher, New York (1999).
- Lee BJ, Sivakkumar SR, Ko JM, Kim JH, Jo SM, Kim DY, J. Power Sources, 168(2), 546 (2007)
- Shan Y, Gao L, Mater. Chem. Phys., 103(2-3), 206 (2007)
- Arabale G, Wagh D, Kulkarni M, Mulla IS, Vernekar SP, Vijayamohanan K, Rao AM, Chem. Phys. Lett., 376(1-2), 207 (2003)
- Prasad KR, Miura N, Electrochem. Commun., 6, 1004 (2004)
- Lee MT, Chang JK, Hsieh YT, Tsai WT, J. Power Sources, 185(2), 1550 (2008)
- Kim BC, Wallace GG, Yoon YI, Ko JM, Too CO, Synth. Met., 159, 1389 (2009)
- Wohlfahrt-Mehrens M, Schenk J, Wilde PM, Abdelmula E, Axmann P, Garche J, J. Power Sources, 105(2), 182 (2002)
- Wang GX, Qu MZ, Yu ZL, Yuan RZ, Mater. Chem. Phys., 105(2-3), 169 (2007)
- Kalpana D, Omkumar KS, Kumar SS, Renganathan NG, Electrochim. Acta, 52(3), 1309 (2006)
- Zhang Y, Sun X, Pan L, Li H, Sun Z, Sun C, Tay BK, J. Alloy. Compd., 480, 17 (2009)
- Jayalakshmi M, Palaniappa M, Balasubramanian K, Int. J. Electrochem. Sci., 3, 96 (2008)
- Lee HY, Goodenough JB, J. Solid State Chem., 148, 81 (1999)
- Naydenov A, Mehandjiev D, Compt. Rend. Acad. Bulg. Sci., 46, 49 (1993)
- Bliznakov GM, Mehandjiev DR, Kinet. Catal., 28, 116 (1987)
- Baricevic AT, Grbic B, Jovanovic D, Angelov S, Mehandjiev D, Marinova C, Stefanov PK, Appl. Catal., 47, 145 (1989)
- Mehandjiev DR, Dimitrova IP, Compt. Rend. Acad. Bulg. Sci., 42, 71 (1989)
- Angelov S, Mehandjiev DR, Piperov B, Zarkov V, Baricevic AT, Jovanovic D, Jovanovic Z, Appl. Catal., 16, 431 (1985)
- Dyakova E, Baricevic AT, Mehandjiev D, Zhecheva E, Grbic B, Kinet. Catal. Lett., 43, 521 (1991)
- Gopal R, Calvo C, Can. J. Chem., 51, 1004 (1973)
- Schindler M, Hawthorne FC, J. Solid State Chem., 146, 271 (1999)
- Zavalij PY, Zhang F, Whittingham MS, Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 53, 1738 (1997)
- Abraham SD, David ST, Bennie RB, Joel C, Seethamahalakshmi M, Adinavven T, Chem. Sci. Transactions, 3(4), 1488 (2014)
- Jayalakshmi M, Rao MM, Venugopal N, Kim KB, J. Power Sources, 166(2), 578 (2007)
- Liu XJ, Osaka T, J. Electrochem. Soc., 144(9), 3066 (1997)