화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.10, 2007-2013, October, 2015
Pretreatment of rice straw by hot-compressed water for enzymatic saccharification
E-mail:
The primary objective of this work was to measure the maximum amount of glucose that can be produced from Thai rice straw using hot-compressed water (HCW)-pretreatment before enzymatic saccharification. The optimal HCW-pretreatment temperature and time were found to be 180 oC/2MPa for 20-30 min. However, the concentrations of the yeast inhibitors were strongly dependent on the HCW-pretreatment temperature and time. At temperatures over 180 oC/2MPa or for more than 30min at 180 oC/2MPa in the HCW-pretreatment the combined concentration of these two inhibitors (Furfural and 5-Hydroxymethylfurfural) increased exponentially, while the glucose levels were near the maximal asymptote. At the more optimal HCW-pretreatment condition of 180 oC/2MPa for 20 min, 25±3 kg of glucose could be produced from a 100 kg of rice straw, which is potentially economically competitive with other sources.
  1. Wei GY, Lee YJ, Kim YJ, Jin IH, Lee JH, Chung CH, Lee JW, Appl. Biochem. Biotechnol., 162(5), 1471 (2010)
  2. Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119 (2011)
  3. Kargbo FR, Xing JJ, Zhang YL, Afr. J. Agric. Res., 4, 1560 (2009)
  4. Wattanasiriwech S, Wattanasiriwech D, Svasti J, J. Non-Cryst. Solids, 356, 1228 (2010)
  5. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA, Bioresour. Technol., 101(23), 8915 (2010)
  6. Taherzadeh MJ, Karimi K, Int. J. Mol. Sci., 9(9), 1621 (2008)
  7. Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A, Bioresour. Technol., 101(13), 4767 (2010)
  8. Jurgens G, Survase S, Berezina O, Sklavounos E, Linnekoski J, Kurkijarvi A, Vakeva M, van Heiningen A, Granstrom T, Biotechnol. Lett., 34(8), 1415 (2012)
  9. Boussarsar H, Roge B, Mathlouthi M, Bioresour. Technol., 100(24), 6537 (2009)
  10. Sun Y, Cheng JY, Bioresour. Technol., 83(1), 1 (2002)
  11. Yang B, Wyman CE, Biofuel. Bioprod. Bior., 2, 26 (2008)
  12. Ravikumar R, Ranganathan BV, Chathoth KN, Gobikrishnan S, Korean J. Chem. Eng., 30(5), 1051 (2013)
  13. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ, Bioresour. Technol., 101, 4851 (2011)
  14. Rabemanolontsoa H, Ayada S, Saka S, Biomass Bioenerg., 35(11), 4630 (2011)
  15. Yu G, Yano S, Inoue H, Inoue S, Endo T, Sawayama S, Appl. Biochem. Biotechnol., 160(2), 539 (2010)
  16. Fatehi P, Biotechnol. Prog., 29(2), 297 (2013)
  17. Kalal HS, Mahani MK, Maragheh MG, Chaloosi M, J. Liq. Chromatogr. Relat. Technol., 30, 2081 (2007)
  18. Palmqvist E, Hahn-Hagerdal B, Bioresour. Technol., 74(1), 25 (2000)
  19. Bandura AV, Lvov SN, J. Phys. Chem. Ref Data, 35, 15 (2006)