Korean Chemical Engineering Research, Vol.53, No.5, 565-569, October, 2015
CoO Thin Nanosheets Exhibit Higher Antimicrobial Activity Against Tested Gram-positive Bacteria Than Gram-negative Bacteria
E-mail:,
Envisaging the role of Co in theranautics and biomedicine it is immensely important to evaluate its antimicrobial activity. Hence in this study CoO thin nanosheets (CoO-TNs) were synthesized using wet chemical solution method at a very low refluxing temperature (90 oC) and short time (60 min). Scanning electron microscopy of the grown structure revealed microflowers (2~3 μm) composed of thin sheets petals (60~80 nm). The thickness of each individual grown sheet varies from 10~20 nm. Antimicrobial activities of CoO-TNs against two Gram positive bacteria (Micrococcus luteus, and Staphylococcus aureus), and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were determined. A 98% and 65% growth inhibition of M. luteus and S. aureus respectively, was observed with 500 μg/ml of CoO-TNs compared to 39 and 34% growth inhibition of E. coli and P. aeruginosa, respectively with the same concentration of CoO-TNs. Hence, synthesized CoO-TNs exhibited antimicrobial activity against Gram negative bacteria and an invariably higher activity against tested Gram positive bacteria. Therefore, synthesized CoO-TNs are less prone to microbial infections.
- Salata OV, J. Nanobiotechnol., 2, 1 (2004)
- Sanvicens N, Marco MP, Trends Biotechnol., 26, 425 (2008)
- Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC, Hum Mutat., 8, 3761 (2008)
- Khan ST, Ahamed M, Musarrat J, Al-Khedhairy AA, Eur. J. Oral Sci., 123, 397 (2014)
- Kim H, Baik KH, Kim J, Jang S, Korean Chem. Eng. Res., 51(2), 292 (2013)
- Nguyen DT, Kim KS, Korean J. Chem. Eng., 31(8), 1289 (2014)
- Akberzadeh A, Samiei M, Davaran S, Nanoscale Res Lett., 7, 144 (2012)
- Wang K, Xu JJ, Chen HY, Biosens. Bioelectron., 20, 1388 (2005)
- Kainz QM, Fernandes S, Eichenseer CM, Besostri F, Korner H, Muller R, Reiser O, Faraday Discuss. (2014)
- Thomas JR, J. Appl. Phys., 37, 2914 (1966)
- Dinega DP, Bawendi MG, Angew. Chem.-Int. Edit., 38, 1788 (1999)
- Ely TO, Pan C, Amiens C, Chaudret B, Dassenoy F, Lecante P, Casanove MJ, Mosset A, Respaud M, Broto JM, J. Phys. Chem. B, 104(4), 695 (2000)
- Devanneaux J, Maurin J, J. Catal., 69, 202 (1981)
- Teng Y, Sakurai H, Ueda A, Kobayashi T, Int. J. Hydrog. Energy, 24(4), 355 (1999)
- Chen JS, Zhu T, Hu QH, Gao J, Su F, Qiao SZ, Lou XW, ACS Appl. Mater. Interfaces, 2, 3628 (2010)
- Wang DS, Ma XL, Wang YG, Wang L, Wang ZY, Zheng W, He XM, Li J, Peng Q, Li Y, Nano Res., 3, 1 (2010)
- Zhang Y, Zhu J, Song X, Zhong X, J. Phys. Chem. C, 112, 5322 (2008)
- Glaspell GP, Jagodzinski PW, Manivannan A, J. Phys. Chem. B, 108, 9607 (2004)
- Cordero J, Munuera L, Folgueira MD, J. Bone Joint Surg. Br., 76, 717 (1994)
- Costerton JW, Montanaro L, Arciola CR, Int. J. Artif. organs, 28, 1062 (2005)
- Nazeruddin GM, Shaikh YI, RJPBCS, 5, 225 (2014)
- Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Int. J. Nanomed., 7, 6003 (2012)
- Khan M, Khan ST, Khan M, Adil SF, Musarrat J, Al-Khedhairy AA, Al-Warthan A, Siddiqui MR, Alkhathlan HZ, Int. J. Nanomed., 28, 3551 (2014)
- Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G, Nanomed., 7, 184 (2011)
- Hassen A, Saidi N, Cherif M, Boudabous A, Bioresour. Technol., 65(1-2), 73 (1998)
- Nikaido H, Microbiol. Mol. Biol. Rev., 67, 593 (2003)