화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.53, No.5, 646-652, October, 2015
절삭유 수용액내 침지식 평막 모듈에 대한 사인파형 투과유속 연속운전 방식의 특성
Characteristics of the Sinusoidal Flux Continuous Operation Mode for the Submerged Flat-sheet Membrane Module in Cutting Oil Solution
E-mail:
초록
본 연구에서는 emulsion 및 semi-synthetic 절삭유 수용액에 침지된 평막형 분리막의 막간 압력차(TMP)를 투과유속에 따라서 측정하였다. 사용한 정밀여과막은 유효 막면적이 0.02 m2이고 공칭 세공크기가 0.15 μm이었다. 저장조 내에 2개의 분리막 모듈을 침지시키고 운전/휴직(R/S) 및 사인파형 투과유속 연속운전(SFCO) 실험을 동시에 실시하였다. Emulsion 수용액의 경우 SFCO에 의한 TMP는 R/S에 비하여 60% 이하로 유지되었으며 투과유속이 증가함에 따라서 TMP 감소효과는 줄어들었다. Semi-synthetic 수용액은 emulsion 수용액보다 탁도가 낮아 막오염이 적게 유발되었으며 장시간 운전할 경우 SFCO에 의한 TMP 효과도 감소하였다.
In this study transmembrane pressure (TMP) was measured with respect to permeate flux through the submerged flat sheet membrane for the emulsion and semi-synthetic cutting oil solutions. The effective area and nominal pore size of the used microfiltration membrane were 0.02 m2 and 0.15 μm, respectively. The experiments were carried out simultaneously for run/stop (R/S) and sinusoidal flux continuous operation (SFCO) modes using two submerged membrane module in the reservoir. TMP for the case of SFCO was maintained under 60% of R/S, and the effect on TMP drop decreased as the permeate flux increased for emulsion cutting oil solution. Membrane fouling for the semisynthetic solution showing low turbidity was induced lower comparing to the emulsion solution. Also, the effect on TMP drop for SFCO decreased during long-term operation.
  1. Bensadok K, Belkacem M, Nezzal G, Desalination, 206(1-3), 440 (2007)
  2. Ayotamuno MJ, Kogbara RB, Ogaji SOT, Probert SD, Appl. Energy, 83(11), 1258 (2006)
  3. Al-Shamrani AA, James A, Xiao H, Colloids Surf. A: Physicochem. Eng. Asp., 209, 15 (2002)
  4. Zhao X, Wang Y, Ye Z, Borthwick AG, Ni J, Process Biochem., 41, 1475 (2006)
  5. Cheryan M, “Ultrafiltration and Microfiltration Handbook,” CRC Press LLC, Florida(1998).
  6. Khemis M, Tanguy G, Leclerc JP, Valentin G, Lapicque F, Process Saf. Environ. Protect., 83(B1), 50 (2005)
  7. Chung KY, Kim JJ, Kim KJ, Fane AG, Membrane J., 8(4), 203 (1998)
  8. Yoon SM, Park K, Kim JY, Han HJ, Kim TI, Kang KS, Bae W, Rhee YW, Korean Chem. Eng. Res., 49(6), 681 (2011)
  9. Schoeman JJ, Novhe O, Water SA, 33(2), 245 (2009)
  10. Salahi A, Gheshlaghi A, Mohammadi T, Madaeni SS, Desalination, 262(1), 235 (2010)
  11. Visvanathan C, Aim RB, Sep. Sci. Technol., 24(5-6), 383 (1989)
  12. Patel TM, Nath K, Korean J. Chem. Eng., 31(10), 1865 (2014)
  13. Milic JK, Muric A, Petrinic I, Simonic M, Ind. Eng. Chem. Res., 52(23), 7603 (2013)
  14. Li XH, Li JX, Wang J, Wang H, Cui CZ, He BQ, Zhang HW, J. Membr. Sci., 451, 226 (2014)
  15. Obaid M, Barakat NAM, Fadali OA, Motlak M, Almajid AA, Khalil KA, Chem. Eng. J., 259, 449 (2015)
  16. Zhu XY, Tu WT, Wee KH, Bai RB, J. Membr. Sci., 466, 36 (2014)
  17. Belkacem M, Hadjiev D, Aurelle Y, Chem. Eng. J., 56, 27 (1995)
  18. Chung KY, Kim DC, Won IH, “Method for Reducing Membrane Fouling in the Water Treatment Apparatus,” Korea Patent, 10-2014-0149394 (2014).
  19. Zeman LJ, Zydney AL, “Microfiltration and Ultrafiltration Principles and Applications,” Marcel Dekker Inc., New York (1996).