Applied Chemistry for Engineering, Vol.26, No.5, 538-542, October, 2015
에폭시/나일론6 블랜드의 경화 동력학 및 열안정성에 관한 연구
Studies on Cure Kinetics and Thermal Stability of Epoxy/Nylon 6 Blend
E-mail:
초록
본 연구에서는 epoxy (Diglycidylether of bisphenol-A, DGEBA)에 대한 nylon 6의 혼합비가 각각 0, 10, 20, 30, 40 wt%로 블랜딩한 혼합 수지를 시차 주사 열량계(DSC)와 열 중량 분석(TGA)을 사용하여 경화 동력학 및 열안정성에 관하여 연구하였다. 실험 결과, nylon 6의 함량이 증가함에 따라 최대 발열 온도(Tmax)가 낮아지며, 경화 활성화 에너지(Ea) 값은 감소하였다. 이는, nylon 6의 함량이 증가함에 따라 DGEBA와 결합이 빠르게 이루어져 최대 발열 온도에 영향을 미친다고 판단된다. DGEBA/nylon 6의 TGA 분석 결과 nylon 6의 함량이 증가할수록 열안정지수(A*.K*) 및 적분 열분해 진행 온도 (IPDT)에 입각한 열안정성이 증가하였다. 이러한 결과는 내열성이 우수한 nylon 6가 DGEBA와 결합하여 DGEBA/nylon 6 내부에 유입되는 열을 흡수하고, 열전달 및 확산을 제어하여 열안정성 인자들의 값이 증가되는 것으로 판단된다.
In this work, effects of the blend composition composed of 0, 10, 20, 30 and 40 wt% of nylon 6 to epoxy (diglycidylether of bisphenol-A, DGEBA) resin were investigated in terms of cure kinetics and thermal stability by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). As the content of the nylon 6 increased, the maximum exothermic temperature (Tmax) and the value of cure activation energy (Ea) decreased. The maximum exothermic temperature of the blending samples decreased with increasing in nylon 6 content, resulting in the decrease in curing activation energy of them due to the rapid curing reaction with epoxy resin in this system. From TGA analysis results of the DGEBA/nylon 6, the thermal stability based on the thermal stability index (A*.K*) and integral procedure decomposition temperature (IPDT) increased with increase in the nylon 6 content. This was because of the combination of DGEBA and nylon 6 having good heat resistance, resulting in improving thermal stability of the DGEBA/nylon 6.
- Zurina M, Ismail H, Ratnam CT, Polym. Test, 27, 480 (2008)
- Polypetchara N, Suppakul P, Atong D, Pechyen C, Energy Procedia, 56, 201 (2014)
- Poncet S, Boiteux G, Pascault JP, Sautereau H, Seytre G, Rogozinski J, Kranbuehl D, Polymer, 40(24), 6811 (1999)
- Park SJ, Jin FL, Shin JS, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 390, 240 (2005)
- Mustata F, Tudorachi N, Bicu I, Composites Part B, 55, 470 (2013)
- Jin FL, Park SJ, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 478, 402 (2008)
- Huang GC, Lee JK, Polym.(Korea), 35(3), 196 (2011)
- Park SJ, Lee HY, Han M, Hong SK, J. Korean Ind. Eng. Chem., 14(2), 176 (2003)
- Park SJ, Seo MK, Lee JR, Korea-Aust. Rheol. J., 11, 135 (1999)
- Park SJ, Jin JS, Lee JR, Pak PK, Text. Sci. Eng., 36, 664 (1999)
- Park SH, Phuong TV, Song HW, Park KN, Kim BM, Choe Y, J. Korean Ind. Eng. Chem., 19(5), 471 (2008)
- Tripathi G, Srivastava D, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 443, 262 (2007)
- Levita G, Marchetti A, Butta E, Polymer, 26, 1110 (1985)
- Huang P, Zheng SX, Huang JY, Guo QP, Zhu W, Polymer, 38(22), 5565 (1997)
- Kalaee M, Akhlaghi S, Nouri A, Mazinani S, Mortezaei M, Afshari M, Mostafanezhad D, Allahbakhsh A, Dehaghi HA, Amirsadri A, Gohari DP, Prog. Org. Coat., 71, 173 (2011)
- Kim HC, J. Korean Soc. Dyers Finishers, 22, 155 (2010)
- Jeon KS, Nirmala R, Navamathavan R, Kim HY, Ceram. Int., 39, 8199 (2013)
- de Velasco-Ruiz MF, Quijada-Garrido I, Benavente R, Barrales-Rienda JM, Polymer, 41(15), 5819 (2000)
- Gendre L, Njuguna J, Abhyankar H, Ermini V, Mater. Des., 66, 486 (2015)
- Kucharczyk P, Sedlarik V, Miskolczi N, Szakacs H, Kitano T, J. Reinf. Plast. Compos., 31, 189 (2012)
- An J, Ge JY, Liu YX, J. Appl. Polym. Sci., 60(11), 1803 (1996)
- Kim S, Kim J, Lim SH, Jo WH, Choe CR, J. Appl. Polym. Sci., 72(8), 1055 (1999)
- Zhao C, Zhang P, Yi L, Xu F, Wang X, Yong J, Polym. Test, 27, 412 (2008)
- Barrett KE, J. Appl. Polym. Sci., 11, 1617 (1967)
- Ozawa T, Bull. Chem. Soc. Jpn., 29, 1881 (1965)
- Kissinger HE, J. Res. Natl. Bur. Stds., 57, 217 (1956)
- Zhong ZK, Guo QP, Polymer, 39(15), 3451 (1998)
- Doyle CD, Anal. Chem., 33, 77 (1961)
- Park SJ, Kim HC, Pak PK, Text. Sci. Eng., 38, 14 (2001)