Applied Chemistry for Engineering, Vol.26, No.5, 575-580, October, 2015
Pd/C 촉매 제조 방법에 따른 Pd 금속의 특성 및 촉매 활성
Effect of Preparation Method for Pd/C Catalysts on Pd Characterization and their Catalytic Activity
E-mail:,
초록
본 연구는 여러 가지 방법에 의해 제조된 Pd/C 촉매의 특성을 질소흡탈착등온선, XRD, FE-TEM 및 CO-chemisorption을 이용하여 확인하였고, 제조된 촉매의 활성을 cyclohexene의 수소화 반응을 통하여 확인하여 제조방법에 따른 촉매의 특성 변화가 촉매 활성에 미치는 영향에 대하여 연구하였다. 각각의 제조방법을 통하여 제조된 Pd/C 촉매의 FE-TEM 분석결과, 이온교환법으로 제조된 촉매의 분산 정도가 매우 우수하며, 폴리올법으로 제조된 촉매의 분산 정도가 매우 낮음을 확인하였다. CO-chemisorption 분석에 의한 분산도 결과 이온교환법, 함침법 및 폴리올법으로 제조된 촉매의 Pd 분산도가 각각 17.55, 13.82% 및 1.35%로 나타나 FE-TEM 결과와 일치함을 확인하였다. 이후 cyclohexene의 수소화반응을 통하여 제조된 촉매의 활성을 확인하였고, 이온교환법으로 제조된 촉매의 cyclohexene의 전환율이 71%로 가장 높음을 확인하였다. 이는 탄소 담지체에 담지된 Pd의 분산도가 반응 활성에 영향을 미쳐 나타난 결과임을 알 수 있었다.
Pd/C catalysts were prepared by various preparation methods such as ion exchange, impregnation and polyol method and also characterized by nitrogen adsorption-desorption isothermal, XRD, FE-TEM and CO-chemisorption. The activities of these catalysts were tested in the hydrogenation of cyclohexene to cyclohexane. Catalytic activities of Pd/C catalysts were found to be effected by the chosen preparation methods. Pd dispersions of each Pd/C catalysts prepared by ion exchange, impregnation and polyol method were 17.55, 13.82% and 1.35%, respectively, confirmed by CO-chemisorption analysis. These were also in good agreement with the FE-TEM results. The Pd/C catalyst prepared by ion exchange method exhibits good performance with the cyclohexene conversion rate of 71% for 15 min. These results indicate that Pd/C catalyst having higher dispersion and lower particle size is in favor of hydrogenation cyclohexene and also Pd dispersion increases with the increment of catalytic activity.
- Tribolet P, Kiwi-Minsker L, Catal. Today, 105(3-4), 337 (2005)
- Onoe T, Iwamoto S, Inoue M, Catal. Commun., 8, 701 (2007)
- Liao HG, Xiao YJ, Zhang HK, Catal. Commun., 19, 80 (2012)
- Fuente AM, Pulgar G, Gonzalez F, Pesquera C, Blanco C, Appl. Catal. A: Gen., 208(1-2), 35 (2001)
- Kim JS, Baek JH, Kim MH, Hong SS, Lee MS, Appl. Chem. Eng., 24(6), 650 (2013)
- Souichi Y, Hidefumi H, Shochi M, Yoji A, Japan Patent, 09-204148 (1997).
- Jia J, Wang Y, Tanabe E, Shishido T, Takehira K, Microporous Mesoporous Mater., 57, 283 (2003)
- Cassell AM, Raymakers JA, Kong J, Dai HJ, J. Phys. Chem. B, 103(31), 6484 (1999)
- Zhang Y, Smith KJ, Catal. Today, 77(3), 257 (2002)
- Takenaka S, Ogihara H, Otsuka K, J. Catal., 208(1), 54 (2002)
- Choudhary TV, Sivadinarayana C, Chusuei CC, Klinghoffer A, Goodman DW, J. Catal., 199(1), 9 (2001)
- Laine NR, Vastoal FJ, Walker PL, Proceedings of 5 th carbon conference, Pergamon Press, New york (1963).
- Ehrburger P, Majahan OP, Walker PL, J. Catal., 43, 61 (1976)
- Vleeming JH, Kuster BF, Marin GB, Oudet F, Courtine P, J. Catal., 166(2), 148 (1997)
- Antonucci PL, Alderucci V, Giordano N, Cocke DL, Kim H, J. Appl. Electrochem., 24(1), 58 (1994)
- Marsh H, Introduction to Carbon Science, Butterworths, London, 1 (1989).
- Marsh H, Introduction to Carbon Technologies, Universidad de Alicant, 36 (1999).
- Smisek M, Cerny S, Active Carbon, Elsevier, New York (1970).
- Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A, J. Phys. Chem. B, 110(27), 13393 (2006)
- Xing YC, J. Phys. Chem. B, 108(50), 19255 (2004)
- Saha S, Ghanawat SJ, Purohit RD, J. Mater. Sci., 41(7), 1939 (2006)
- Anderson JA, Athawale A, Imrie FE, McKenna FM, McCue A, Molyneux D, Power K, Shand M, Wells RPK, J. Catal., 270(1), 9 (2010)