화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.5, 575-580, October, 2015
Pd/C 촉매 제조 방법에 따른 Pd 금속의 특성 및 촉매 활성
Effect of Preparation Method for Pd/C Catalysts on Pd Characterization and their Catalytic Activity
E-mail:,
초록
본 연구는 여러 가지 방법에 의해 제조된 Pd/C 촉매의 특성을 질소흡탈착등온선, XRD, FE-TEM 및 CO-chemisorption을 이용하여 확인하였고, 제조된 촉매의 활성을 cyclohexene의 수소화 반응을 통하여 확인하여 제조방법에 따른 촉매의 특성 변화가 촉매 활성에 미치는 영향에 대하여 연구하였다. 각각의 제조방법을 통하여 제조된 Pd/C 촉매의 FE-TEM 분석결과, 이온교환법으로 제조된 촉매의 분산 정도가 매우 우수하며, 폴리올법으로 제조된 촉매의 분산 정도가 매우 낮음을 확인하였다. CO-chemisorption 분석에 의한 분산도 결과 이온교환법, 함침법 및 폴리올법으로 제조된 촉매의 Pd 분산도가 각각 17.55, 13.82% 및 1.35%로 나타나 FE-TEM 결과와 일치함을 확인하였다. 이후 cyclohexene의 수소화반응을 통하여 제조된 촉매의 활성을 확인하였고, 이온교환법으로 제조된 촉매의 cyclohexene의 전환율이 71%로 가장 높음을 확인하였다. 이는 탄소 담지체에 담지된 Pd의 분산도가 반응 활성에 영향을 미쳐 나타난 결과임을 알 수 있었다.
Pd/C catalysts were prepared by various preparation methods such as ion exchange, impregnation and polyol method and also characterized by nitrogen adsorption-desorption isothermal, XRD, FE-TEM and CO-chemisorption. The activities of these catalysts were tested in the hydrogenation of cyclohexene to cyclohexane. Catalytic activities of Pd/C catalysts were found to be effected by the chosen preparation methods. Pd dispersions of each Pd/C catalysts prepared by ion exchange, impregnation and polyol method were 17.55, 13.82% and 1.35%, respectively, confirmed by CO-chemisorption analysis. These were also in good agreement with the FE-TEM results. The Pd/C catalyst prepared by ion exchange method exhibits good performance with the cyclohexene conversion rate of 71% for 15 min. These results indicate that Pd/C catalyst having higher dispersion and lower particle size is in favor of hydrogenation cyclohexene and also Pd dispersion increases with the increment of catalytic activity.
  1. Tribolet P, Kiwi-Minsker L, Catal. Today, 105(3-4), 337 (2005)
  2. Onoe T, Iwamoto S, Inoue M, Catal. Commun., 8, 701 (2007)
  3. Liao HG, Xiao YJ, Zhang HK, Catal. Commun., 19, 80 (2012)
  4. Fuente AM, Pulgar G, Gonzalez F, Pesquera C, Blanco C, Appl. Catal. A: Gen., 208(1-2), 35 (2001)
  5. Kim JS, Baek JH, Kim MH, Hong SS, Lee MS, Appl. Chem. Eng., 24(6), 650 (2013)
  6. Souichi Y, Hidefumi H, Shochi M, Yoji A, Japan Patent, 09-204148 (1997).
  7. Jia J, Wang Y, Tanabe E, Shishido T, Takehira K, Microporous Mesoporous Mater., 57, 283 (2003)
  8. Cassell AM, Raymakers JA, Kong J, Dai HJ, J. Phys. Chem. B, 103(31), 6484 (1999)
  9. Zhang Y, Smith KJ, Catal. Today, 77(3), 257 (2002)
  10. Takenaka S, Ogihara H, Otsuka K, J. Catal., 208(1), 54 (2002)
  11. Choudhary TV, Sivadinarayana C, Chusuei CC, Klinghoffer A, Goodman DW, J. Catal., 199(1), 9 (2001)
  12. Laine NR, Vastoal FJ, Walker PL, Proceedings of 5 th carbon conference, Pergamon Press, New york (1963).
  13. Ehrburger P, Majahan OP, Walker PL, J. Catal., 43, 61 (1976)
  14. Vleeming JH, Kuster BF, Marin GB, Oudet F, Courtine P, J. Catal., 166(2), 148 (1997)
  15. Antonucci PL, Alderucci V, Giordano N, Cocke DL, Kim H, J. Appl. Electrochem., 24(1), 58 (1994)
  16. Marsh H, Introduction to Carbon Science, Butterworths, London, 1 (1989).
  17. Marsh H, Introduction to Carbon Technologies, Universidad de Alicant, 36 (1999).
  18. Smisek M, Cerny S, Active Carbon, Elsevier, New York (1970).
  19. Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A, J. Phys. Chem. B, 110(27), 13393 (2006)
  20. Xing YC, J. Phys. Chem. B, 108(50), 19255 (2004)
  21. Saha S, Ghanawat SJ, Purohit RD, J. Mater. Sci., 41(7), 1939 (2006)
  22. Anderson JA, Athawale A, Imrie FE, McKenna FM, McCue A, Molyneux D, Power K, Shand M, Wells RPK, J. Catal., 270(1), 9 (2010)