화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.5, 587-592, October, 2015
불소화 처리된 페놀계 활성탄소를 이용한 톨루엔 가스흡착 특성
Adsorption Characteristics of Toluene Gas Using Fluorinated Phenol-based Activated Carbons
E-mail:
초록
휘발성 유기화합물(Volatile organic compounds, VOCs) 중 톨루엔 가스의 흡착특성을 향상시키기 위하여 불소화 반응을 이용하여 활성탄소를 처리하였다. 이 활성탄소의 기공특성과 표면특성 평가를 위하여 비표면적 측정기와 X선광전자분광법(XPS)을 사용하여 분석하였고, 가스크로마토그래피를 이용하여 톨루엔 가스 흡착능과 제거효율을 고찰하였다. 100 ppm의 톨루엔 가스가 300 cm3/min으로 주입될 때, 불소화 처리된 활성탄소의 파과시간이 미처리 활성탄소에 비하여 약 27% 증가하였다. 0.1 g의 불소처리 활성탄소 흡착재는 19 h의 흡착시간 동안 100 ppm 농도의 톨루엔 가스를 모두 제거하였다. 이러한 실험 결과들은 톨루엔과 같은 발암성 물질을 제거하는 처리 기술로 활용될 수 있음을 보여주었다.
Activated carbons (ACs) were treated by fluorination to improve the adsorption property of toluene gas among volatile organic compounds (VOCs). The pore characteristics and surface properties of these activated carbons were evaluated by BET and XPS and the adsorption property and removal efficiency of toluene gas was investigated by gas chromatography. The breakthrough time of fluorinated ACs was increased about 27% compared to that of untreated ACs when the toluene gas of 100 ppm was flowed at a flow rate of 300 cm3/min. Fluorinated AC of 0.1 g adsorbent totally adsorbed toluene gas in 100 ppm to 100 % during the adsorption time in 19 h. These results can be used as a treatment technology or removal of carcinogenic materials such as toluene.
  1. Jung SC, Lee SH, J. Korean Soc. Environ. Eng., 34, 397 (2012)
  2. Hafaiedh I, Elleuch W, Clement P, Llobet E, Abdelghani A, Sens. Actuators B-Chem., 182, 344 (2013)
  3. Kim Y, Kim DY, Jung MJ, Kim MI, Lee YS, Appl. Chem. Eng., 24(3), 314 (2013)
  4. Kim SH, Kang TS, Yang HS, Vu TNY, Park HS, J. Korean Soc. Atmos. Envrion., 22, 799 (2006)
  5. An HH, J. Korean Inst. Gas, 14, 35 (2010)
  6. Chun YN, Kim EH, Lim MS, Cheon WI, Trans. Korean Soc. Mech. Eng., 11, 2815 (2014)
  7. Huang SW, Lou JC, Lin YC, J. Hazard. Mater., 183(1-3), 641 (2010)
  8. Kim HS, Park YS, J. Korean Soc. Environ. Eng., 25, 977 (2003)
  9. Kadirvelu K, Kavipriya M, Karthika C, Vennilamani N, Pattabhi S, Carbon, 42, 745 (2004)
  10. Ju HS, Lee SI, Lee YS, Ahn HG, Appl. Chem., 4(1), 173 (2000)
  11. Ko S, Kim DH, Kim YD, Park D, Jeong W, Lee DH, Lee JY, Kwon SB, Appl. Chem. Eng., 24(5), 513 (2013)
  12. Liu SX, Chen X, Chen XY, Liu ZF, Wang HL, J. Hazard. Mater., 141(1), 315 (2007)
  13. Cardoso B, Mestre AS, Carvalho AP, Pires J, Ind. Eng. Chem. Res., 47(16), 5841 (2008)
  14. Jung MJ, Lim JW, Park IJ, Lee YS, Appl. Chem. Eng., 21(3), 317 (2010)
  15. Im JS, Kang SC, Bai BC, Bae TS, In SJ, Jeong E, Lee SH, Lee YS, Carbon, 49(7), 2235 (2011)
  16. Im JS, Yun J, Lim YM, Kim HI, Lee YS, Acta Biomater, 6, 102 (2010)
  17. Kim J, Im JS, Seo KW, Lee YS, Polym.(Korea), 37(1), 86 (2013)
  18. Kong NS, Cha SG, Seo JY, J. Korean Soc. Atmos. Envrion., 19, 689 (2003)
  19. Lee MG, Jun PJ, Lee DH, Kam SK, J. Korean Ind. Eng. Chem., 14(7), 864 (2003)
  20. Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(1), 92 (2015)
  21. Mangun CL, Benak KR, Economy J, Foster KL, Carbon, 39, 1809 (2001)
  22. Jin W, Wang Y, Wang X, Jin L, Lu J, Luo M, Adsorpt. Sci. Technol., 29, 405 (2011)
  23. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS, J. Colloid Interface Sci., 318, 42 (2008)
  24. Tressaud A, Durand E, Labrugere C, J. Fluorine Chem., 125, 1639 (2004)
  25. Mathur RB, Gupta V, Bahl OP, Tressaud A, Flandrois S, Synth. Met., 114, 197 (2000)
  26. Lee YS, Lee BK, Carbon, 40, 2461 (2002)
  27. Lee JM, Kim SJ, Kim JW, Kang PH, Nho YC, Lee YS, J. Ind. Eng. Chem., 15(1), 66 (2009)
  28. Jung MJ, Jeong E, Kim S, Lee SI, Yoo JS, Lee YS, J. Fluorine. Chem., 132, 1127 (2011)
  29. Kim SG, Chang YR, J. Korean Soc. Atmos. Envrion., 24, 220 (2008)
  30. Kim DY, Kim Y, Cho S, Jung JY, Kim MI, Lee YS, Appl. Chem. Eng., 24(6), 587 (2013)
  31. Bismarck A, Tahhan R, Springer J, Schulz A, Klapotke TM, Zell H, Michaeli W, J. Fluorine Chem., 84, 127 (1997)
  32. Shim CH, Lee WK, J. Korean Soc. Atmos. Envrion., 21, 471 (2005)