Applied Chemistry for Engineering, Vol.26, No.5, 604-608, October, 2015
부영양화 방지를 위하여 느릅나무 수피를 활용한 수중에서 질산성질소의 제거능 향상
Enhancement of Nitrate Removal Ability in Aqueous Phase Using Ulmus davidiana Bark for Preventing Eutrophication
E-mail:,
초록
본 연구에서는 부영양화 문제를 해결하기 위하여 강원 지역에서 발생되는 느릅나무 수피를 사용하여 질산성질소 제거능 향상에 대하여 고찰하였다. 회분식 실험에 의하여 수용액의 초기 pH가 3.5로 조절되었을 때, 10, 20 mg/L 질산성 질소의 제거효율은 각각 43, 37%까지 증가하였다. 또한, 1.0 g/100 mL 느릅나무 수피를 8 h 사용하였을 때, 20 mg/L 질산성질소 제거효율은 68%를 나타내었다. 그리고 함산소불화 조건에서 느릅나무 수피의 개질 반응이 수행되었을때, 질산성질소 흡착능 향상을 위한 최적의 불소와 산소 분압비가 1 : 9임을 도출하였다. 최적의 함산소불화 조건에서 개질된 느릅나무 수피를 사용하여 8 h 운전이 이루어졌을 때, 10, 20, 40 mg/L 질산성질소 제거효율은 각각 96, 95, 59%를 나타내었다. 따라서, 이러한 결과들은 수체에 함유된 고농도 질산성질소를 효과적으로 처리하는 수처리 기술로 사용될 수 있을 것이다.
In the present work, the improvement of nitrate removal ability was investigated to resolve a eutrophication problem by using Ulmus davidiana (U. davidiana) bark generated from Gangwon province. When the initial pH of aqueous solution was adjusted to 3.5 in batch experiments, the removal efficiencies for 10 and 20 mg/L nitrate increased up to 43 and 37%, respectively. In addition, when U. davidiana bark of 1.0 g/100 mL was used for 8 h, the removal efficiency for 20 mg/L nitrate was 68%. Moreover, when reforming reaction of U. davidiana bark was performed under oxyfluorination conditions, the optimal ratio of partial pressure between fluorine and oxygen was 1 : 9 for an enhanced nitrate adsorption amount. When reformed U. davidiana bark was used for 8 h operation under the optimal oxyfluorination condition, removal efficiencies for 10, 20 and 40 mg/L nitrate were found to be 96, 95 and 59%, respectively. Collectively, these results suggest that our water treatment technology can be effectively utilized to treat high concentrations of nitrate in water bodies.
- Jeong JY, Park JH, Choi WH, Park JY, J. Kor. Soi. Water Wastewater, 25(5), 651 (2011)
- Loganathan P, Vignewaran S, Kandasamy J, J. Environ. Manage., 131, 363 (2013)
- Duncan C, Li H, Dykhuizen R, Frazer R, Johnson P, MacKnight G, Smith L, Lamza K, McKenzie H, Batt L, Kelly D, Golden M, Benjamin N, Leifert C, Comp. Biochem. Physiol., 118A(4), 939 (1997)
- Choi KO, Seo SJ, Ko S, Food Eng. Prog., 18(1), 36 (2014)
- Ayyasamy PM, Shanthi K, Lakshmanaperumalsamy P, Lee SJ, Choi NC, Kim DJ, J. Biosci. Bioeng., 104(2), 129 (2007)
- Bohdziewicz J, Bodzek M, Wasik E, Desalination, 121(2), 139 (1999)
- Lehman SG, Badruzzaman M, Adham S, Roberts DJ, Clifford DA, Water Res., 42, 969 (2008)
- Kesore K, Janowski F, Shaposhnik VA, J. Membr. Sci., 127(1), 17 (1997)
- Yang GCC, Lee HL, Water Res., 39, 884 (2005)
- Kapoor A, Viraraghavan T, J. Environ. Eng., 123(4), 371 (1997)
- Xu X, Gao BY, Yue QY, Li Q, Wang Y, Chem. Eng. J., 234, 397 (2013)
- Xu X, Gao BY, Tan X, Zhang XX, Yue QY, Wang Y, Li Q, Chem. Eng. J., 226, 1 (2013)
- Gwon HJ, Park EJ, Choi JB, Lim JY, Jeong JO, Shin YM, Jeong SI, Park JS, Lim YM, Choi YH, Kim SS, Polym.(Korea), 38(1), 69 (2014)
- Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(1), 92 (2015)
- Gregg SJ, Sing KSW, Adsorption surface and porosity, Second ed., 195, Academy Press, London (1982).
- Ibrahim MNM, Ngah WSW, Norliyana MS, Daud WRW, Rafatullah M, Sulaiman O, Hashim R, J. Hazard. Mater., 182(1-3), 377 (2010)