화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.6, 981-985, November, 2015
천연재료에 의해 보강된 폴리프로필렌 바이오 복합재의 기계적 물성: 리그닌 개질효과
Mechanical Properties of Natural Material Reinforced Polypropylene Bio-Composites: The Effects of Chemical Modification of Lignin
E-mail:
초록
친수성 리그닌 표면을 polypropylene-graft-maleic anhydride(MAPP)로 개질하여 미세섬유상 셀룰로오스와 함께 폴리프로필렌 바이오 복합재의 혼합 보강재로 사용하였다. FTIR과 SEM/EDX를 이용하여 개질 전 리그닌 표면에 MAPP의 화학결합을 통한 리그닌 표면개질을 확인하였다. 리그닌 표면개질 효과를 비교하기 위하여 개질 전 리그닌을 이용한 3성분(미세섬유상 셀룰로오스/리그닌/폴리프로필렌) 바이오 복합재를 대조군으로 함께 비교하였다. 리그닌과 미세섬유상 셀룰로오스의 혼합비율에 따라 폴리프로필렌 바이오 복합재의 열적 특성과 기계적 특성이 의존하였으며, MAPP로 개질된 리그닌(MAPP-Lignin)에 의한 3성분 바이오 복합재의 인장강도와 인장탄성률은 개질전 리그닌을 사용하였을 때보다 증가하였다.
The surface modified lignin (MAPP-Lignin) was prepared by using polypropylene-graft-maleic anhydride (MAPP) and used to fabricate a polypropylene bio-composite as a second reinforcing filler with microfibriled cellulose (MFC). The surface modification of the lignin was confirmed by FTIR and SEM/EDX measurements. The pristine lignin was also used in the MFC/Lignin/PP bio-composites as control samples. The thermal and mechanical properties of MFC/Lignin/PP bio-composites depended on the mixture ratio of MFC and lignin (pristine lignin or MAPP-Lignin) in the MFC/Lignin/PP bio-composites. It was found that MAPP-Lignin was more efficient to improve tensile strength and tensile modulus in the MFC/Lignin/PP bio-composites than those of pristine lignin.
  1. Oksman K, Skrifvars M, Selin JF, Compos. Sci. Technol., 63, 1317 (2003)
  2. Bledzki AK, Gassan J, Prog. Polym. Sci, 24, 221 (1999)
  3. Averous L, Moro L, Dole P, Fringant C, Polymer, 41(11), 4157 (2000)
  4. Canetti M, Bertini F, Comps. Sci. Technol., 67, 3151 (2007)
  5. Morandim-Giannetti AA, Agnelli JAM, Lancas BZ, Magnabosco R, Casarin SA, Bettini SHP, Carbohydr. Polym., 87, 2563 (2012)
  6. Stewart D, Ind. Crop. Prod., 27, 202 (2008)
  7. Graupner N, Fischer H, Ziegmann G, Mussig J, Compos. Pt. B-Eng., 66, 117 (2014)
  8. Gradwell SE, Renneckar S, Esker AR, Heinze T, Gatenholm P, Vaca-Garcia C, Glasser W, C. R. Biol., 327, 945 (2004)
  9. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM, J. Mater. Sci., 36(9), 2107 (2001)
  10. Bledzki AK, Gassan J, Prog. Polym. Sci, 24, 221 (1999)
  11. Shibata S, Cao Y, Fukumoto I, Polym. Test, 25, 142 (2006)
  12. Yeo JS, Seong DW, Hwang SH, Elast. Compos., 50, 162 (2015)
  13. Yeo JS, Hwang SH, J. Adhes. Sci. Technol., 29(3), 185 (2015)
  14. Siqueira G, Bras J, Dufresne A, Polymer, 2, 728 (2010)
  15. Nishino T, Matsuda I, Hirao K, Macromolecules, 37(20), 7683 (2004)
  16. Gindl W, Keckes J, Polymer, 46(23), 10221 (2005)
  17. Kumar MNS, Mohanty AK, Erickson L, Misra M, J. Biobased Mater. Bio., 3, 1 (2009)
  18. Glasser WG, Barnett CA, Muller PC, Sarkanen KV, J. Agric. Food Chem., 31, 921 (1983)
  19. Setua DK, Sukla MK, Neegam V, Singh H, Mathur GN, Polym. Compos., 21, 988 (2000)
  20. Laurichesse S, Averous L, Prog. Polym. Sci, 39, 1266 (2014)
  21. Yeo JS, Seong DW, Hwang SH, J. Ind. Eng. Chem., doi:10.1016/j.jiec.2015.06.010.
  22. Agrawal R, Saxena NS, Sharma KB, Thomas S, Sreekala MS, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 277, 77 (2000)
  23. Tonoli GHD, Filho UPR, Savastano H, Bras J, Belgacem MN, Lahr FA, Compos. Pt. A-Appl. Sci. Manuf., 40, 2046 (2009)
  24. Romandd HD, Tan KW, Kumar RN, Abubakar A, Ishak ZAM, Ismail H, Eur. Polym. J., 36, 1483 (2000)
  25. Sahoo S, Misra M, Mohanty AK, J. Appl. Polym. Sci., 127(5), 4110 (2013)
  26. Xu X, He Z, Lu S, Guo D, Yu J, Macromol. Res., 22(10), 1084 (2014)