Polymer(Korea), Vol.39, No.6, 981-985, November, 2015
천연재료에 의해 보강된 폴리프로필렌 바이오 복합재의 기계적 물성: 리그닌 개질효과
Mechanical Properties of Natural Material Reinforced Polypropylene Bio-Composites: The Effects of Chemical Modification of Lignin
E-mail:
초록
친수성 리그닌 표면을 polypropylene-graft-maleic anhydride(MAPP)로 개질하여 미세섬유상 셀룰로오스와 함께 폴리프로필렌 바이오 복합재의 혼합 보강재로 사용하였다. FTIR과 SEM/EDX를 이용하여 개질 전 리그닌 표면에 MAPP의 화학결합을 통한 리그닌 표면개질을 확인하였다. 리그닌 표면개질 효과를 비교하기 위하여 개질 전 리그닌을 이용한 3성분(미세섬유상 셀룰로오스/리그닌/폴리프로필렌) 바이오 복합재를 대조군으로 함께 비교하였다. 리그닌과 미세섬유상 셀룰로오스의 혼합비율에 따라 폴리프로필렌 바이오 복합재의 열적 특성과 기계적 특성이 의존하였으며, MAPP로 개질된 리그닌(MAPP-Lignin)에 의한 3성분 바이오 복합재의 인장강도와 인장탄성률은 개질전 리그닌을 사용하였을 때보다 증가하였다.
The surface modified lignin (MAPP-Lignin) was prepared by using polypropylene-graft-maleic anhydride (MAPP) and used to fabricate a polypropylene bio-composite as a second reinforcing filler with microfibriled cellulose (MFC). The surface modification of the lignin was confirmed by FTIR and SEM/EDX measurements. The pristine lignin was also used in the MFC/Lignin/PP bio-composites as control samples. The thermal and mechanical properties of MFC/Lignin/PP bio-composites depended on the mixture ratio of MFC and lignin (pristine lignin or MAPP-Lignin) in the MFC/Lignin/PP bio-composites. It was found that MAPP-Lignin was more efficient to improve tensile strength and tensile modulus in the MFC/Lignin/PP bio-composites than those of pristine lignin.
Keywords:lignin;surface modification;microfibriled cellulose;polypropylene-graft-maleic anhydride;bio-composites;mechanical properties
- Oksman K, Skrifvars M, Selin JF, Compos. Sci. Technol., 63, 1317 (2003)
- Bledzki AK, Gassan J, Prog. Polym. Sci, 24, 221 (1999)
- Averous L, Moro L, Dole P, Fringant C, Polymer, 41(11), 4157 (2000)
- Canetti M, Bertini F, Comps. Sci. Technol., 67, 3151 (2007)
- Morandim-Giannetti AA, Agnelli JAM, Lancas BZ, Magnabosco R, Casarin SA, Bettini SHP, Carbohydr. Polym., 87, 2563 (2012)
- Stewart D, Ind. Crop. Prod., 27, 202 (2008)
- Graupner N, Fischer H, Ziegmann G, Mussig J, Compos. Pt. B-Eng., 66, 117 (2014)
- Gradwell SE, Renneckar S, Esker AR, Heinze T, Gatenholm P, Vaca-Garcia C, Glasser W, C. R. Biol., 327, 945 (2004)
- Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM, J. Mater. Sci., 36(9), 2107 (2001)
- Bledzki AK, Gassan J, Prog. Polym. Sci, 24, 221 (1999)
- Shibata S, Cao Y, Fukumoto I, Polym. Test, 25, 142 (2006)
- Yeo JS, Seong DW, Hwang SH, Elast. Compos., 50, 162 (2015)
- Yeo JS, Hwang SH, J. Adhes. Sci. Technol., 29(3), 185 (2015)
- Siqueira G, Bras J, Dufresne A, Polymer, 2, 728 (2010)
- Nishino T, Matsuda I, Hirao K, Macromolecules, 37(20), 7683 (2004)
- Gindl W, Keckes J, Polymer, 46(23), 10221 (2005)
- Kumar MNS, Mohanty AK, Erickson L, Misra M, J. Biobased Mater. Bio., 3, 1 (2009)
- Glasser WG, Barnett CA, Muller PC, Sarkanen KV, J. Agric. Food Chem., 31, 921 (1983)
- Setua DK, Sukla MK, Neegam V, Singh H, Mathur GN, Polym. Compos., 21, 988 (2000)
- Laurichesse S, Averous L, Prog. Polym. Sci, 39, 1266 (2014)
- Yeo JS, Seong DW, Hwang SH, J. Ind. Eng. Chem., doi:10.1016/j.jiec.2015.06.010.
- Agrawal R, Saxena NS, Sharma KB, Thomas S, Sreekala MS, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 277, 77 (2000)
- Tonoli GHD, Filho UPR, Savastano H, Bras J, Belgacem MN, Lahr FA, Compos. Pt. A-Appl. Sci. Manuf., 40, 2046 (2009)
- Romandd HD, Tan KW, Kumar RN, Abubakar A, Ishak ZAM, Ismail H, Eur. Polym. J., 36, 1483 (2000)
- Sahoo S, Misra M, Mohanty AK, J. Appl. Polym. Sci., 127(5), 4110 (2013)
- Xu X, He Z, Lu S, Guo D, Yu J, Macromol. Res., 22(10), 1084 (2014)