화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.53, No.6, 755-761, December, 2015
UVLED 광원을 이용한 광촉매 VOC 제거 특성 평가시 온도에 따른 농도 변화에 관한 연구
A Study of the Temperature Dependency for Photocatalytic VOC Degradation Chamber Test Under UVLED Irradiations
E-mail:
초록
광촉매의 VOC 제거 특성 평가에 관한 최근의 연구는 온도 변화가 거의 없는 상태에서 실시되었다. 온도 변화를 적게 하기 위해 광량이 높은 UVLED를 챔버 위부에 배치하게 되면 광촉매와의 거리가 멀어져 그만큼 효율이 감소할 수 밖에 없으며 광촉매의 효율 향상을 위해서는 광원과 광촉매의 거리를 가까이 해야 할 필요가 있다. 본 연구에서는 UVLED 광원과 광촉매와의 거리를 가까이 두어 온도가 변하는 VOC 제거 시스템을 제작하였다. 광촉매로는 자외선 광원에서 반응하는 상용 TiO2와 vanadium 이온을 도핑시킨 TiO2를 사용하였으며 제작된 챔버를 이용하여 광촉매 효율을 평가하였다. VOC 제거 평가 시 테스트 전후 온도는 약 20 oC 상승하여 UVLED 광원에 의해 변화된 온도로 VOC의 농도를 보정하여 온도에 따른 VOC 제거 효율 변화를 확인하였다. 보정 전후의 제거 효율을 비교하면 43~46%의 차이를 보였다. 챔버 내 온도 상승이 p-xylene의 농도 변화에 큰 영향을 주며 이를 보정하여 광촉매의 VOC 제거 효율을 평가할 필요가 있음을 확인할 수 있었다.
Photocatalytic VOCs removal test in gas phase is generally performed by placing the light source on the outside due to maintaining a constant temperature inside the test chamber. The distance between light source and photocatalysts is importantin the VOC degradation test since the intensity of light is rapidly decreased as the distance farther. Especially, for the choice of light source as UVLED, this issue is more critical because UVLED light source emits lots of heat and it is hard to measure the exact concentration of VOCs due to changed temperature in the test chamber. In this study, we modified VOC removal test chamber base on the protocol of air cleaner test and evaluated the efficiency of photocatalystunder UVLED irradiation. Photocatalystsof two different samples (commercial TiO2 and the synthesized vanadium doped TiO2) weretested for the p-xylene degradation in the closed chamber system and compared with each other in order to exclude any experimental uncertainties. During the VOC removal test, VOC concentrations were monitored and corrected at regular time intervals because the temperature in the chamber increases ~20 oC due tothe heat of UVLED. The results showed that theconversion ratio of p-xylene has 40~43% difference before and after the temperature correction. Based on those results, we conclude that the VOC concentration correction must be required for the VOC removal test in a closed chamber system under UVLED light source and obtained the corrected efficiencies of various photocatlysts.
  1. Alberici RM, Jardim WE, Appl. Catal. B: Environ., 14(1-2), 55 (1997)
  2. Liu Y, Quan X, Zhao Y, Chen S, Zhao H, Biochem. Eng. J., 23, 85 (2005)
  3. Kim H, Ogata A, Futamura S, Int. J. Plasma Environ. Sci. Tehcnol., 1(1), 46 (2007)
  4. Everaert K, Baeyens J, J. Hazard. Mater., 109(1-3), 113 (2004)
  5. Das D, Gaur V, Verma N, Carbon, 42, 2949 (2004)
  6. Kumar T, Rahul, Kumar M, Chandrajit B, Res. J. Chem. Sci., 1(8), 83 (2011)
  7. Maira AJ, Yeung KL, Lee CY, Yue PL, Chan CK, J. Catal., 192(1), 185 (2000)
  8. Kasuga T, Hiramatsu M, Hirano M, Hoson A, Oyamada K, J. Mater. Res., 12(3), 607 (1997)
  9. Ha HY, Anderson MA, HWAHAK KONGHAK, 34(3), 356 (1996)
  10. Rezaee A, Pourtaghi H, Khvanin A, Mamoory R, Ghaneian M, Godini H, Iran. J. Environ. Health. Sci. Eng., 5, 305 (2008)
  11. Kim MS, Kim JS, Kim BW, Korean J. Chem. Eng., 29(5), 549 (2012)
  12. Jung JH, Korean Chem. Eng. Res., 46(5), 852 (2008)
  13. Zuo GM, Cheng ZX, Chen H, Li GW, Miao T, J. Hazard. Mater., 128(2-3), 158 (2006)
  14. Peng M, Cha W, J. Korea Academia-Industrial Cooperation Society, 14(10), 5304 (2013)
  15. Augugliaro V, Loddo V, Pagliaro M, Palmisano G, Palmisano L, Royal Society of Chemistry, 246 (2010)
  16. Hsiang H, Lin S, Ceram. Int., 34, 557 (2008)
  17. Nainani R, Thakur P, Chaskar M, J. Mater. Sci. Eng. B, 2(1), 52 (2012)
  18. Sakthivel S, Kisch H, Angew. Chem.-Int. Edit., 42, 4908 (2003)
  19. Brusturean G, Carre J, Perju D, Todinca T, J. Serb. Chem. Soc., 71(12), 1353 (2006)
  20. Mital G, Manoj T, Phys. Chem., 56(16), 1639 (2011)