화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.29, 238-248, September, 2015
Optimization of CO2 methanation reaction over M*/Mn/Cu.Al2O3 (M*: Pd, Rh and Ru) catalysts
The catalytic activity of CO2 methanation with H2 over M*/Mn/Cu-Al2O3 (M* = Pd, Rh and Ru) oxide catalysts in simulated natural gas was investigated. Among them, Ru/Mn/Cu-Al2O3 catalyst was found to be the most promising catalyst. Response surface methodology involving central composite design was employed and Ru loading was found to be the most significant effective factor, followed by calcination temperature and catalyst loading. The optimum condition for CO2 conversion was at 10.9 wt.% Ru loading, calcination temperature of 1035 8C and catalyst loading of 5 wt.g. Interestingly, the RMC10 catalyst demonstrated good activity, stability and robustness during entire testing period which is suitable for industrial application.
  1. Dietert J, Kessier R, Morris M, Outlook for Natural Gas, Simmons and Company International, 2005.
  2. Tom ZJ, Studies Say Natural Gas has its Own Environmental Problems, New York Edition, 2011.
  3. Speight JG, Natural Gas: A Basic Handbook, Gulf Publishing Company, Hounston, Texas, 2007, pp. 7-10.
  4. Gabriele C, Elsje AQ, Siglinda P, Energy Environ. Sci., 6, 1711 (2013)
  5. Barbarossa V, Bassano C, Deiana P, Vanga G, CO2 Conversion to CH4, Green, Energy and Technology, Springer-Verlag London, 2013, pp. 123-145.
  6. Sabatier P, Senderens JB, Comptes Rendus, 514, 134 (1902)
  7. VanderWiel DP, Zilka-Marco JL, Wang Y, Tonkovich AY, Wegeng RS, AIChe2000, Spring National Meeting, Atlanta, GA, 2000p. 187.
  8. Liu ZH, Chu BZ, Zhai XL, Jin Y, Cheng Y, Fuel, 95(1), 599 (2012)
  9. Bakar WAWA, Ali R, Sulaiman N, Rahim HA, J. Sci. Iran. Trans. C: Chem. Chem. Eng., 17, 115 (2010)
  10. da Silva DCD, Letichevsky S, Borges LEP, Appel LG, Int. J. Hydrog. Energy, 37(11), 8923 (2012)
  11. Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R, Int. J. Hydrog. Energy, 37(7), 5527 (2012)
  12. Panagiotopoulou P, Kondarides DI, Verykios XE, Appl. Catal. A: Gen., 344(1-2), 45 (2008)
  13. Peng Y, Zhongyi L, Wanging Z, Haijie S, Shouchang L, Chin. J. Catal., 31, 769 (2010)
  14. Qi GX, Zheng XM, Fei JH, Hou ZY, Catal. Lett., 72(3-4), 191 (2001)
  15. Bakar WAWA, Zamani AH, Sustainability: Green Chemistry,Titanium and Copper Oxide based Catalysts for Simultaneous Reactions of Methanation and Desulfurization in the Removal of Sour Gases from Simulated Natural Gas, Universiti Teknologi Malaysia Press, 2012, pp. 225-243 (Chapter 13).
  16. Myers RH, Montgometry DC, Response Surface Methodology: Process and Product Optimization using Designed Experiments, John Wiley & Sons, USA, 2002.
  17. Khuri AI, Cornell J, A Response Surface: Design and Analysis, Dekker, New York, 1987.
  18. Pongstabodee S, Monyanon S, Luengnaruemitchai A, Int. J. Hydrog. Energy, 37(6), 4749 (2012)
  19. Kramer M, Duisberg M, Stowe K, Maier WF, J. Catal., 251(2), 410 (2007)
  20. Wang YZ, Wu RF, Zhao YX, Catal. Today, 158(3-4), 470 (2010)
  21. Haaland DP, Experimental Design in Biotechnology, Marcel Dekker Inc., New York, Basel, 1989.
  22. Oh SW, Bang HJ, Bae YC, Sun YK, J. Power Sources, 173(1), 502 (2007)
  23. Sharma S, Hu ZP, Zhang P, McFarland EW, Metiu H, J. Catal., 278(2), 297 (2011)
  24. Hwang S, Lee J, Hong UG, Baik JH, Koh DJ, Lim H, Song IK, J. Ind. Eng. Chem., 19(2), 698 (2013)
  25. Li J, Zhou L, Li PC, Zhu QS, Gao JJ, Gu FN, Su FB, Chem. Eng. J., 219, 183 (2013)
  26. Zhao L, Ma J, Sun ZZ, Zhai XD, Appl. Catal. B: Environ., 83(3-4), 256 (2008)