화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.30, 33-43, October, 2015
Enhanced photocatalytic activity of TiO2 by reduced graphene oxide in mineralization of Rhodamine B dye
E-mail:
A series of reduced graphene oxide (RGO)-TiO2 nanocomposites with varying weight percentage of RGO were prepared by solvothermal method. The as-prepared samples were characterized by FT-IR, XRD, TEM, UV.Visible DRS, PL, EIS and Raman analysis. The photocatalytic activity was evaluated toward the decolourization/degradation of Rhodamine B dye (RhB) under UV light. The effects of various parameters such as RGO content, initial dye concentration, pH and catalytic dose on decolourization were studied and optimized. The results were also compared with bare TiO2. At optimized conditions the influence of various dye bath additives on decolourization has been examined and discussed in detail. It was found that the RGO-TiO2 composites (RGOT) had a better photocatalytic activity than TiO2. The enhanced activity is due to the presence of bi-dimensional RGO network in the composite photocatalysts which suppresses the recombination of photo-induced charge carriers. Reusability test results revealed that the catalyst is photostable, easily separable and reusable. The degradation kinetics obeys Langmuir. Hinshelwood model.
  1. Wang W, Yu J, Xiang Q, Cheng B, Appl. Catal. B: Environ., 119-120, 109 (2012)
  2. Nitoi I, Oancea P, Raileanu M, Crisan M, Constantin L, Cristea I, J. Ind. Eng. Chem., 21, 677 (2015)
  3. Xiang QJ, Yu JG, Wong PK, J. Colloid Interface Sci., 357(1), 163 (2011)
  4. Zhang Y, Zhou Z, Chen T, Wang H, Lu W, J. Environ. Sci., 26, 2114 (2014)
  5. Lee SY, Park SJ, J. Ind. Eng. Chem., 19(6), 1761 (2013)
  6. Galinska A, Walendziewski J, Energy Fuels, 19(3), 1143 (2005)
  7. Amir M, Kurtan U, Baykal A, J. Ind. Eng. Chem., http://dx.doi.org/10.1016/j.jiec.2015.01.013. (2015)
  8. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
  9. Jin ZL, Zhang XJ, Li YX, Li SB, Lu GX, Catal. Commun., 8, 1267 (2007)
  10. Xiang Q, Yu J, Jaroniec M, Nanoscale, 3, 3670 (2011)
  11. Sun YQ, Wu QO, Shi GQ, Energy Environ. Sci., 4, 1113 (2011)
  12. Li S, Pan X, Wallis LK, Fan Z, Chen Z, Diamond SA, Chemosphere, 112, 62 (2014)
  13. Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132 (2010)
  14. Cong Y, Long M, Cui Z, Li X, Dong Z, Yuan G, Zhang J, Appl. Surf. Sci., 282, 400 (2013)
  15. Wang DH, Choi DW, Li J, Yang ZG, Nie ZM, Kou RD, Hu H, Wang CM, Saraf LV, Zhang JG, Aksay IA, Liu J, ACS Nano, 3, 907 (2009)
  16. Cao AN, Liu Z, Chu SS, Wu MH, Ye ZM, Cai ZW, Chang YL, Wang SF, Gong QH, Liu YF, Adv. Mater., 22(1), 103 (2010)
  17. Ng YH, Iwase A, Kudo A, Amal R, J. Phys. Chem. Lett., 1, 2607 (2010)
  18. Xiang Q, Yu J, Jaroniec M, J. Phys. Chem. C, 115, 7355 (2011)
  19. Xiang Q, Yu J, Jaroniec M, Chem. Soc. Rev., 41, 782 (2012)
  20. Hua CY, Chen F, Lu TW, Lian CJ, Zheng SZ, Hu QH, Duo SW, Zhang RB, Appl. Surf. Sci., 317, 648 (2014)
  21. Gu YJ, Xing MY, Zhang JL, Appl. Surf. Sci., 319, 8 (2014)
  22. Pei S, Cheng HM, Carbon, 50, 3210 (2012)
  23. Wang F, Zhang K, J. Mol. Catal. A-Chem., 345(1-2), 101 (2011)
  24. Wang P, Ao Y, Wang C, Hou J, Qian J, J. Hazard. Mater., 79, 223 (2012)
  25. Wickramaratne NP, Jaroniec M, J. Colloid Interface Sci., 449, 297 (2015)
  26. Yang MQ, Zhang N, Xu YJ, Appl. Mater. Int., 5(3), 1156 (2013)
  27. Fan W, Lai Q, Zhang Q, Wang Y, J. Phys. Chem. C, 115, 10694 (2011)
  28. Zhang YX, Wu HY, Zhang J, Wang HT, Lu WJ, J. Hazard. Mater., 221-222, 92 (2012)
  29. Kryshnamoorthy K, Veerapandian M, Yun K, Kim SJ, Carbon, 53, 38 (2013)
  30. Nguyen-Phan TD, Pham VH, Shin EW, Pham HD, Kim S, Chung JS, Kim EJ, Hur SH, Chem. Eng. J., 170(1), 226 (2011)
  31. Han Z, Wei L, Pan H, Li C, Chen J, J. Mol. Catal. A-Chem., 398, 399 (2015)
  32. Xing M, Shen F, Qiu B, Zhang J, Sci. Rep., http://dx.doi.org/10.1038/srep06341., 4, 6341 (2014)
  33. Li KX, Xiong JJ, Chen T, Yan LS, Dai YH, Song DY, J. Hazard. Mater., 250-251, 19 (2013)
  34. Yang MQ, Zhang N, Xu YJ, ACS Appl. Mater. Int., 5(3), 1156 (2013)
  35. Hirsch A, Angew. Chem.-Int. Edit., 48, 6594 (2009)
  36. Molina J, Fernandez J, Ines JC, del Rio AI, Bonastre J, Cases F, Electrochim. Acta, 93, 44 (2013)
  37. Muthirulan P, Devi CN, Sundaram MM, Ceram. Int., 40, 5945 (2014)
  38. Thien GSH, Omar FS, Blya NISA, Chiu WS, Lim HN, Yousefi R, Sheini FJ, Huang NM, Int. J. Photoenergy, http://dx.doi.org/10.1155/2014/650583, Article ID 650583. (2014)
  39. Choi SK, Kim S, Lim SK, Park H, J. Phys. Chem. C, 114(39), 16475 (2010)
  40. Zhang H, Lv X, Li Y, Wang Y, Li J, ACS Nano, 4, 380 (2010)
  41. Khalid NR, Ahmed E, Hong Z, Zhang Y, Ullah M, Ahmed M, Ceram. Int., 39, 3569 (2013)
  42. Liu H, Dong X, Duan C, Su X, Zhu Z, Ceram. Int., 39, 8789 (2013)
  43. Akyol A, Yatmaz HC, Bayramoglu M, Appl. Catal. B: Environ., 54(1), 19 (2004)
  44. Gao BF, Ma Y, Cao Y, Yang WS, Yao JN, J. Phys. Chem. B, 110(29), 14391 (2006)
  45. Zhao DL, Sheng GD, Chen CL, Wang XK, Appl. Catal. B: Environ., 111, 303 (2012)
  46. Wang WS, Wang DH, Qu WG, Lu LQ, Xu AW, J. Phys. Chem. C, 116, 19893 (2012)
  47. Wang Y, Water Res., 34, 990 (2000)
  48. Safari M, Nikazar M, Dadvar M, J. Ind. Eng. Chem., 19(5), 1697 (2013)
  49. Chen F, Zhao J, Hidaka H, Int. J. Photoenergy, 5, 209 (2003)
  50. Hsieh SH, Chen WJ, Wu CT, Appl. Surf. Sci., 340, 9 (2015)
  51. Wong CC, Chu W, Chemosphere, 50, 981 (2003)
  52. Muruganandham A, Shobana N, Swaminathan A, J. Mol. Catal. A-Chem., 246(1-2), 154 (2006)
  53. Okamoto K, Yamamoto Y, Tanaka H, Itaya A, Bull. Chem. Soc. Jpn., 58, 2015 (1985)
  54. Rupa AV, Manikandan D, Divakar D, Revathi S, Preethi MEL, Shanthi K, Sivakumar T, Indian J. Chem. Technol., 14(1), 71 (2007)
  55. Rupa AV, Manikandan D, Divakar D, Sivakumar T, J. Hazard. Mater., 147(3), 906 (2007)
  56. Wenhua L, Hong L, Saoan C, Jianqing Z, Chunan C, J. Photochem. Photobiol. A-Chem., 131, 125 (2000)
  57. Daneshvar N, Salari D, Khataee AR, J. Photochem. Photobiol. A-Chem., 157, 111 (2003)