화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.30, 289-294, October, 2015
Application of the extended DLVO approach to mechanistically study the algal flocculation
E-mail:
The extended DLVO theory was applied to study the mechanism of algal flocculation with clays. Montmorillonite-K10, montmorillonite-KSF, kaolinite, and loess were used as the model clays whereas Microcystis sp. and Prorocentrum minimum were used as the model freshwater algae and marine algae, respectively. Montmorillonite-KSF showed the highest flocculation efficiency not only for Microcystis sp. especially at pH 7 but also for P. minimum. From the application of the extended DLVO theory, the electrostatic and the Lewis acid.base interactions were found to be the dominant mechanisms for the flocculation of Microcystis sp. in freshwater and P. minimum in seawater, respectively.
  1. Sengco MR, Anderson DM, J. Eukaryot. Microbiol., 51, 169 (2004)
  2. Anderson DM, Nature, 388(6642), 513 (1997)
  3. Chorus I, Bartram J, Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, Spon Press, New York, 1999.
  4. Gu JX, The Characters and Applications of Nonmetal Mineral Materials, Wuhan University Publishing Company, 1992.
  5. Sengco MR, Li A, Tugend K, Kulis D, Anderson DM, Mar. Ecol. Prog. Ser., 210, 41 (2001)
  6. Drikas M, Chow CW, House J, Burch MD, Am J, Water Work Assoc., 93, 100 (2001)
  7. Jana B, J. Fish Biol., 53, 12 (1998)
  8. Nagasaki K, Tarutani K, Yamaguchi M, Appl. Environ. Microbiol., 65, 898 (1999)
  9. Becker EW, Microalgae: Biotechnology and Microbiology, Cambridge University Press, 1994.
  10. Iranpour R, Stenstrom M, Tchobanoglous G, Miller D, Wright J, Vossoughi M, Science, 285, 706 (1999)
  11. Pan G, UK patent publication number: GB2337749, 1998.
  12. Han MY, Kim W, Microchem. J., 68, 157 (2001)
  13. Pan G, Zhang MM, Chen H, Zou H, Yan H, Environ. Pollut., 141, 195 (2006)
  14. Pieterse A, Cloot A, Water Sci. Technol., 36, 111 (1997)
  15. Brenner H, O’Neill ME, Chem. Eng. Sci., 27, 1421 (1972)
  16. Wacholder E, Sather N, J. Fluid Mech., 65, 417 (1974)
  17. Jeffrey D, Onishi Y, J. Fluid Mech., 139, 261 (1984)
  18. Valioulis IA, List EJ, Adv. Colloid Interface Sci., 20, 1 (1984)
  19. Gregory J, O’Melia CR, Crit. Rev. Environ. Sci. Technol., 19, 185 (1989)
  20. Han M, Lawler DF, Hydraul J, Eng.-ASCE, 117, 1269 (1991)
  21. Van Oss C, Good R, Chaudhury M, J. Colloid Interface Sci., 111, 378 (1986)
  22. Hermansson M, Colloids Surf. B: Biointerfaces, 14, 105 (1999)
  23. Hoek EMV, Agarwal GK, J. Colloid Interface Sci., 298(1), 50 (2006)
  24. Choi AR, Oh HM, Lee JA, Algae, 17, 171 (2002)
  25. Hansen PJ, Aquat. Microb. Ecol., 28, 279 (2002)
  26. Hobbie JE, Daley RJ, Jasper S, Appl. Environ. Microbiol., 33, 1225 (1977)
  27. Jiang JQ, Kim CG, Sep. Sci. Technol., 43(7), 1677 (2008)
  28. Hwang G, Park SR, Lee CH, Ahn IS, Yoon YJ, Mhin BJ, J. Hazard. Mater., 172(1), 491 (2009)
  29. Van der Mei H, Van de Belt-Gritter B, Busscher H, Colloids Surf. B: Biointerfaces, 5, 117 (1995)
  30. Karaguzel C, Can MF, Sonmez E, Celik MS, J. Colloid Interface Sci., 285(1), 192 (2005)
  31. Washburn EW, Phys. Rev., 17, 273 (1921)