Applied Chemistry for Engineering, Vol.26, No.6, 714-718, December, 2015
수열합성법에 의한 PbMo1-xCrxO4 산화물의 합성 및 광촉매 활성
Synthesis of PbMo1-xCrxO4 Oxides Prepared Using Hydrothermal Process and their Photocatalytic Activity
E-mail:
초록
PbMoO4 및 PbMo1-xCrxO4 산화물을 수열합성법으로 합성하여 XRD, DRS, Raman, SEM 및 PL 등에 의해 특성분석을 하였고, 자외선 및 가시광 조사 하에서 rhodamine B의 광분해 반응에서의 활성을 조사하였다. XRD 및 Raman의 분석결과로부터 대부분의 촉매들은 크롬이온의 첨가와 무관하게 잘 결정화된 PbMoO4 구조를 가지고 있었으며 51에서 59 nm의 크기를 나타내었다. PbMo1-xCrxO4 산화물의 DRS 곡선은 가시광 영역으로 강한 흡수선을 나타내었다. PbMoO4 산화물은 가시광 조사 하에서 낮은 광촉매 활성을 나타내었으나 크롬이온의 첨가량이 증가할수록 활성이 증가하였다. 모든 촉매들은 540-580 nm 부근에서 강하고 넓은 PL 흡수밴드가 나타났으며, 이 피크의 세기가 커질수록 광분해 활성이 증가하는 것으로 나타났다.
Both lead molybdate (PbMoO4) and chromium substituted lead molybdate (PbMo1-xCrxO4) were successfully synthesized using a conventional hydrothermal method and characterized by XRD, DRS, Raman, SEM and PL. We also investigated the photocatalytic activity of these materials for the decomposition of rhodamine B under UV-visible irradiation. The XRD and Raman results revealed the successful synthesis of well-crystallized PbMoO4 crystals with the diameter of 51-59 nm, regardless of the addition of chromium ion. The DRS spectra of PbMo1-xCrxO4 catalysts showed new intensive absorption bands in the visible region. The PbMoO4 catalysts showed the lowest photocatalytic activity and the activity increased with an increase of chromium substitution amounts under visible irradiation. PL peaks appeared at about 540-580 nm for all catalysts and excitonic PL signals were proportional to the photocatalytic activity for the decomposition of rhodamine B.
Keywords:PbMoO4 and PbMo1-xCrxO4 catalysts;hydrothermal process;photocatalytic decomposition of Rhodamine B
- Konstantinou IK, Albanis TA, Appl. Catal. B: Environ., 49(1), 1 (2004)
- Zhang KL, Liu CM, Huang FQ, Zheng C, Wang WD, Appl. Catal. B: Environ., 68(3-4), 125 (2006)
- Chen H, Ge C, Li R, Wang J, Wu C, Zeng X, J. Phys. Chem., 113, 5812 (2009)
- Liu J, Ma J, Lin B, Ren Y, Jiang X, Tao J, Zhu X, Ceram. Int., 34, 1557 (2008)
- Xing G, Liu R, Zhao C, Li Y, Wang Y, Wu G, Ceram. Int., 37, 2951 (2011)
- Wu S, Dong H, Wei W, J. Alloy. Compd., 375, 39 (2004)
- Kudo A, Steinberg M, Bard AJ, Campton A, Fox MA, Mallouk TE, Webber SE, White JM, Catal. Lett., 5, 61 (1990)
- Zeng HC, J. Cryst. Growth, 171, 136 (1997)
- Jia GH, Tu CY, You ZY, Li JF, Zhu ZJ, Wang Y, Wu BC, J. Cryst. Growth, 273(1-2), 220 (2004)
- Jung WY, Hong SS, J. Ind. Eng. Chem., 19(1), 157 (2013)
- Jung WY, Lim KW, Kim JH, Lee MS, Hong SS, J. Nanosci. Nanotechnol., 13, 6160 (2003)
- Bi JH, Wu L, Zhang YF, Li ZH, Li JQ, Fu XZ, Appl. Catal. B: Environ., 91(1-2), 135 (2009)
- Cullity BD, Elements of X-Ray Diffraction, Adison-Wesley, Reading, MA (1978).
- Phuruangrat A, Thongtem T, Thongtem S, J. Cryst. Growth, 311(16), 4076 (2009)
- Jung WY, Lee GD, Park SS, Lim KW, Lee MS, Hong SS, J. Nanosci. Nanotechnol., 11, 7446 (2011)