화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.32, 123-127, December, 2015
DC electrical conductivity retention and thermo-optical studies of camphor sulfonic acid doped cetyl tri methyl ammonium bromide-assisted graphene/polyaniline composite nanofibers
E-mail:
This paper reports the synthesis of camphor sulfonic acid (CSA) doped PANI/GN composite nanofibers by the in situ chemical oxidative polymerization of aniline in the presence of cationic surfactant cetyl tri methyl ammonium bromide (CTAB). The as-synthesized composite nanofibers were examined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, UV.vis diffused reflectance spectroscopy, and thermogravimetric analysis. The CSA-doped PANI/GN composite nanofibers showed higher DC electrical conductivity than PANI, which was attributed to the enhanced mobility of the charge carriers after the incorporation of GN into the PANI/GN composite nanofibers. The PANI/GN composite nanofibers also showed improved DC electrical conductivity retention at 413 K, which might be due to the synergistic effects of GN and PANI in the composite structure.
  1. Yin Z, Zheng Q, Adv. Energy Mater., 2, 179 (2012)
  2. Ghosh S, Remita H, Ramos L, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert HP, Remita S, New J. Chem., 38, 1106 (2014)
  3. Ghosh S, Kouame NA, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert HP, Remita H, Nat. Mater., 14, 505 (2015)
  4. Stankovich S, Dikin DA, Dommett GHB, Kohihaas KM, Zimney EJ, Stach EA, Nature, 442, 282 (2006)
  5. Wei T, Luo G, Fana Z, Zheng C, Yan J, Yao C, Carbon, 47, 2290 (2009)
  6. Yang XM, Li LA, Shang SM, Tao XM, Polymer, 51(15), 3431 (2010)
  7. Bae S, Lee JU, Park HS, Jung EH, Jung JW, Jo WH, Sol. Energy Mater. Sol. Cells, 130, 599 (2014)
  8. Cheng Q, Tang J, Shinya N, Qin LC, J. Power Sources, 241, 423 (2013)
  9. Baniasadi H, Ramazani ASA, Mashayekhan S, Ghaderinezhad F, Synth. Met., 196, 199 (2014)
  10. Zhang J, Xu Y, Fan L, Zhu Y, Liang J, Qian Y, Nano Energy, 13, 592 (2015)
  11. Basavaraja C, Kim WJ, Kim DG, Huh DS, Polym. Compos., 33, 388 (2012)
  12. Mao L, Zhang K, Chan HSO, Wu JS, J. Mater. Chem., 22, 80 (2012)
  13. Wang CW, Wang Z, Li MK, Li HL, Chem. Phys. Lett., 341(5-6), 431 (2001)
  14. Hasan M, Ansari MO, Cho M, Lee M, Electron. Mater. Lett., 11(1), 1 (2015)
  15. Mathew H, Punnackal VS, Kuriakose S, Kumari S, Manuel A, Int. J. Sci. Res. Publ., 3(8), 1 (2013)
  16. Lee K, Cho S, Park SH, Heeger AJ, Lee CW, Lee SH, Nature, 441, 65 (2006)
  17. Hasan M, Banerjee AN, Lee M, J. Ind. Eng. Chem., 21, 828 (2015)
  18. Hasan M, Ansari MO, Cho MH, Lee M, J. Ind. Eng. Chem., 22, 147 (2015)
  19. da Silva JEP, de Faria DLA, de Torresi SIC, Temperini MLA, Macromolecules, 33(8), 3077 (2000)
  20. Harish C, SreeHarsha VS, Santhosh C, Ramachandran R, Saranya M, Vanchinathan TM, Govardhan K, Grace AN, Adv. Sci. Eng. Med., 4, 1 (2012)
  21. Chakraborty G, Guatak S, Meikap AK, Woods T, Babu R, Blau WJ, J. Polym. Sci. B: Polym. Phys., 48(15), 1767 (2010)
  22. Mohammad F, Handbook of Organic Conductive Molecules and Polymers, John Wiley & Sons, Chichester, 1997p. 834.
  23. Stejskal J, Kratochvıl P, Radhakrishnan N, Synth. Met., 61, 225 (1993)
  24. Mzendaa VM, Goodmana SA, Aureta FD, Prinsloob LC, Synth. Met., 127, 279 (2002)
  25. Zengin H, Zhou WS, Jin JY, Czerw R, Smith DW, Echegoyen L, Carroll DL, Foulger SH, Ballato J, Adv. Mater., 14(20), 1480 (2002)
  26. Pinto NJ, Shah PD, Kahol PK, Phys. Rev., B, Condens. Matter, 53, 10690 (1996)
  27. Grant PM, Batra IP, Solid State Commun., 29, 225 (1979)