화학공학소재연구정보센터
Macromolecular Research, Vol.23, No.11, 1073-1078, November, 2015
Cationic effect of an ionic copolymer with a temperature-responsive charateristic on the LCST value: A broad LCST spectrum of 35 to 46 °C
E-mail:
A series of stimuli-responsive copolymers (p-NIBIm) of N-isopropylacrylamide (NIPAAm) and 1-butyl-3-vinyl imidazolium bromide (BVIm) with various BVIm monomer concentrations such as 5, 10, 15, and 20 mol% were synthesized by radical copolymerization. The different concentrations of the imidazolium moiety within the resulted copolymer chain were determined by 1H NMR analysis. The LCST (lower critical solution temperature) values of the copolymers that were checked by UV-Vis spectrophotometer increased with the increasing concentration of the imidazolium moiety and were ranged from 36 up to 46 °C. According to the increasing concentration of the imidazolium moiety, the p-NIBIm copolymers also showed increasing zeta potential values (from +3.4 up to +21.3 mV) at pH 7, increasing initial and final micelle sizes (from 211.5 to 69.1 and from 325.4 to 171.2 nm), respectively, at 25 and 50 °C, and increasing contraction levels of micelle volumes between 25-50 °C (from 2.69×10-18 up to 8.67×10-18 cm3). These results demonstrate that it is possible to tune the LCST value of a temperature-responsive copolymer only by changing the imidazolium unit (BVIm) concentration within the copolymer chain. Moreover, p-NIBIm10 and 15 among the prepared copolymers could demonstrate high applicability in various endeavors such as on a target drug or in a gene delivery system.
  1. Rzaev ZMO, Dincer S, Piskin E, Prog. Polym. Sci, 32, 534 (2007)
  2. Schmaljohann D, Adv. Drug Deliv. Rev., 58, 1655 (2006)
  3. Pang Y, Liu JY, Su Y, Wu JL, Zhu LJ, Zhu XY, Yan DY, Zhu BS, J. Polym. Sci. A: Polym. Chem., 2, 1661 (2011)
  4. Yuk SH, Cho SH, Lee SH, Macromolecules, 30(22), 6856 (1997)
  5. Persson J, Johansson HO, Galaev I, Mattiasson B, Tjerneld F, Bioseparation, 9, 105 (2000)
  6. Laukkanen A, Valtola L, Winnik FM, Tenhu H, Macromolecules, 37(6), 2268 (2004)
  7. Niu GG, Djaoui AB, Cohn D, Polymer, 52(12), 2524 (2011)
  8. Dinarvand R, D'Emanuele A, J. Control. Release, 36, 221 (1995)
  9. Klemetsrud T, Hiorth M, Smistad G, Kjoniksen A, J. Colloid Interface Sci., 450, 7 (2015)
  10. Yeh JC, Yang HH, Hsu YT, Su CM, Lee TH, Loua SL, Colloids Surf. A: Physicochem. Eng. Asp., 421, 1 (2013)
  11. Hiruta Y, Nagumo Y, Suzuki Y, Funatsu T, Ishikawa Y, Kanazawa H, Colloids Surf. B: Biointerfaces, 132, 299 (2015)
  12. Li JJ, Zhou YN, Luo ZH, Polymer, 55, 6552 (2014)
  13. Khimani M, Yusa S, Nagae A, Enomoto R, Aswal VK, Kesselman E, Danino D, Bahadur P, Eur. Polym. J., 69, 96 (2015)
  14. Fundueanu G, Constantin M, Asmarandei I, Bucatariu S, Harabagiu V, Ascenzi P, Simionescu BC, Eur. J. Pharm. Biopharm., 85, 614 (2013)
  15. Joshi RV, Nelson CE, Poole KM, Skala MC, Duvall CL, Acta Biomater., 9, 6526 (2013)
  16. Seo JW, Hwang JY, Shin US, RSC Adv., 4, 26738 (2014)
  17. Yoon MY, Kim JH, Choi DS, Shin US, Lee JY, Song CE, Adv. Synth. Catal., 349, 1725 (2007)
  18. Deshmukh RR, Lee JW, Shin US, Lee JY, Song CE, Angew. Chem.-Int. Edit., 47, 8615 (2008)
  19. Shin US, Hong HK, Kim HW, Gong MS, Bull. Korean Chem. Soc., 32, 1583 (2011)
  20. Lee BS, Chi YS, Lee JK, Choi IS, Song CE, Namgoong SK, Lee SG, J. Am. Chem. Soc., 126(2), 480 (2004)
  21. Kim YJ, Streitwieser A, J. Am. Chem. Soc., 124(20), 5757 (2002)
  22. Wang X, Li S, Wan Z, Quan Z, Tan Q, Int. J. Pharm., 463, 81 (2014)
  23. Eeckman F, Moes AJ, Amighi K, J. Control. Release, 88, 105 (2003)
  24. Strandman S, Zhu XX, Prog. Polym. Sci, 42, 154 (2015)
  25. Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T, J. Control. Release, 62, 115 (1999)
  26. Chen N, Xiang X, Tiwari A, Heiden PA, J. Colloid Interface Sci., 391, 60 (2013)