- Previous Article
- Next Article
- Table of Contents
Macromolecular Research, Vol.23, No.12, 1168-1173, December, 2015
Bone-regenerative activity of parathyroid hormone-releasing nano-hydroxyapatite/poly(L-lactic acid) hybrid scaffolds
E-mail:,
We developed a bone-regenerative scaffold based on systematic combination of porous organic-inorganic hybrid scaffolds and recombinant human parathyroid hormone (rhPTH). The hybrid scaffold was fabricated by immobilization of polyphosphate-functionalized nano-hydroxyapatite (PP-n-HAp) on the surface of porous poly(L-lactic acid) (PLLA) scaffolds, which was followed by rhPTH loading on the polyphosphates of n-HAp surfaces. The surface polyphosphate functionalities of PP-n-HAp enabled the stable chemical immobilization of n-HAp on the amine-treated pore surface of the PLGA scaffolds. rhPTH with a positive charge was bound at a high efficiency of 98.1~99.5% onto the anionic polyphosphates of PP-n-HAp immobilized on PLLA surfaces and was sustainably released for up to 50 days. The release rate was manipulated by adjusting the amount of loaded rhPTH, and the release data were moderately fitted to the Higuchi’s diffusion model. Four types of scaffolds were tested in rabbit calvarias models (PLLA only, PP-n-HAp-PLLA, rhPTH (2 μg) loaded PP-n-HAp-PLLA, and rhPTH (10 μg) loaded PP-n-HAp-PLLA). After 5 weeks, rhPTH-loaded PP-n-HAp-PLLA (2 and 10 μg of rhPTH) displayed higher bone growth than the control (PLLA only) group. Nano-HAp and sustained release of rhPTH might be synergistically able to enhance the bone healing in the animal model.
Keywords:parathyroid hormone;nano-hydroxyapatite;sustained release;poly(L-lactic acid);surface immobilization
- Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, N. Engl. J. Med., 344, 1434 (2001)
- Greenspan SL, Bone HG, Ettinger MP, Hanley DA, Lindsay R, Zanchetta JR, Blosch CM, Mathisen AL, Morris SA, Marriott TB, Ann. Intern. Med., 146, 326 (2007)
- Manabe T, Mori S, Mashiba T, Kaji H, Iwata K, Komatsubara S, Seki A, Sun YX, Yamamoto T, Bone, 40, 1475 (2007)
- Hodsman AB, Kisiel M, Adachi JD, Fraher LJ, Watson PH, Bone, 27, 311 (2000)
- Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF, J. Bone Miner. Res., 18, 1932 (2003)
- Brixen KT, Christensen PM, Ejersted C, Langdahl BL, Basic Clin. Pharmacol. Toxicol., 94, 260 (2004)
- Aggarwal P, Zavras A, Oral Dis., 18, 48 (2012)
- Chan HL, McCauley LK, J. Dent. Res., 92, 18 (2013)
- Wronski TJ, Yen CF, Bone, 15, 51 (1994)
- Gunness-Hey M, Hock JM, Metab. Bone Dis. Res., 5, 171 (1984)
- Hock JM, Centrella M, Canalis E, Endocrinology, 122, 2899 (1988)
- Oxlund H, Ejersted C, Andreassen TT, Torring O, Nilsson MH, Calcif. Tissue Int., 53, 394 (1993)
- Wronski TJ, Yen CF, Qi H, Dann LM, Endocrinology, 132, 823 (1993)
- Liu Y, Lu Y, Tian X, Cui G, Zhao Y, Yang Q, Yu S, Xing G, Zhang B, Biomaterials, 30, 6276 (2009)
- Fu S, Ni P, Wang B, Chu B, Peng J, Zheng L, Zhao X, Luo F, Wei Y, Qian Z, Biomaterials, 33, 8363 (2012)
- Kim K, Dean D, Lu A, Mikos AG, Fisher JP, Acta Biomater., 7, 1249 (2011)
- Shen H, Hu X, Yang F, Bei J, Wang S, Acta Biomater., 6, 455 (2010)
- Ronca A, Ambrosio L, Grjpma DW, Acta Biomater., 9, 5989 (2013)
- Ribeiro N, Sousa SR, Monteiro FJ, J. Colloid Interface Sci., 351(2), 398 (2010)
- Kim SE, Choi HW, Lee HJ, Chang JH, Choi J, Kim KJ, Lim HJ, Jun YJ, Lee SC, J. Mater. Chem., 18, 4994 (2008)
- Jeon BJ, Jeong SY, Koo AN, Kim BC, Hwang YS, Lee SC, Macromol. Res., 20(7), 715 (2012)
- Song Z, Yin Z, Li C, Yang Z, Ning C, Zhou D, Wang R, Xu Y, Qiu J, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 32, 1032 (2012)
- Hua FJ, Kim GE, Lee JD, Son YK, Lee DS, J. Biomed. Mater. Res., 63, 161 (2002)
- Chunxiao W, Jingjing L, Yire X, Min D, Zhaohui W, Gaofu Q, Xiangchun S, Xuejun W, Jie W, Taiming L, Regul. Pept., 141, 35 (2007)
- Medi BM, Singh J, Int. J. Pharm., 263, 25 (2003)
- Lee HJ, Koo AN, Lee SW, Lee MH, Lee SC, J. Control. Release, 170, 198 (2013)