화학공학소재연구정보센터
Clean Technology, Vol.21, No.4, 217-223, December, 2015
에탄올-n-헵탄 공비 혼합물의 분리를 위한 압력변환 증류공정 연구
A Study on the Pressure-Swing Distillation of Ethanol-n-Heptane Azeotrope
E-mail:
초록
본 연구에서는 에탄올-n-헵탄 이성분계 공비 혼합물의 분리를 위해 압력변환 증류공정(pressure-swing distillation, PSD)을 사용하여 전산모사 및 공정 최적화를 진행하였다. 저압-고압 컬럼 배열과 고압-저압 컬럼 배열을 통해 고순도 에탄올과 고순도 n-헵탄을 얻기 위한 압력변환 증류공정을 수행하였다. 전산모사 결과, 저압-고압 컬럼 배열 공정보다 고압-저압 컬럼배열 공정을 사용할 경우 heat duty 값이 약 5.8% 정도 감소되어 에너지 소모량 면에서 더 경제적임을 확인할 수 있었다.
In the present study, modelling and optimization of ethanol-n-heptane separation process were performed using pressure-swing distillation. The pressure-swing distillation process optimization was performed to obtain high purity ethanol and high purity n-heptane into a low-high pressure columns configuration and a high-low pressure columns configuration. The results of pressure-swing distillation process simulation and optimization using high-low pressure column configuration showed a reduced total reboiler heat duty at 5.8% which confirmed a more economical energy consumption.
  1. Raal JD, Code RK, Best DA, J. Chem. Eng. Data, 17(2), 211 (1972)
  2. Pereiro AB, Rodriguez A, Sep. Purif. Technol., 62(3), 733 (2008)
  3. Pereiro AB, Rodriguez A, Ind. Eng. Chem. Res., 48(3), 1579 (2009)
  4. Laroche L, Bekiaris N, Andersen HW, Morari M, Can. I., Chem. Eng., 69, 1302 (1991)
  5. William LL, Chien LI, “Design and Control of Distillation Systems for Separating Azeotropes,” A John Wiley & Sons, Inc., (2010).
  6. Hilmen EK, “Separation of Azeotropic Mixtures: Tools for Analysis and Studies on Batch Distillation Operation,” Ph. D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2000.
  7. “PRO/II TM Keyword Manual,” Invensys Systems, Inc.,(2010).
  8. Renon H, Prausnitz JM, AIChE J., 14(1), 135 (1968)
  9. Soave G, Chem. Eng. Sci., 27, 1197 (1972)
  10. “PRO/II Application Briefs,” Simulation Sciences Inc., (2005).