화학공학소재연구정보센터
Clean Technology, Vol.21, No.4, 248-256, December, 2015
수열방법으로 합성된 이산화망간의 물리화학적 특성과 일산화탄소 산화반응
Physicochemical Properties of MnO2 Catalyst Prepared via Hydrothermal Process and its Application for CO Oxidation
E-mail:
초록
MnO2를 KMnO4와 MnCl2.4H2O을 이용해 자연침전을 유도한 후, 수열방법으로 120-200 ℃, 0.5-5시간 범위에서 제조하여 300 ℃에서 열처리 후 CO 산화반응을 수행하였다. 촉매활성 원인의 규명과 물리화학적 특성을 분석하기 위해 X 선 회절 분석, 질소 흡착, 주사전자현미경, 수소 또는 일산화탄소 승온환원 분석(H2- 또는 CO-TPR)을 실시하였다. 합성조건에 따라 순수한 α-MnO2 혹은 α/β-혼합상을 가진 MnO2가 각각 합성되었다. 촉매활성과 안정성은 순수한 α-MnO2 상에서 α/β-혼합상을 가진 MnO2보다 우수하게 관찰되었다. 특히, 150 ℃에서 1시간 수열 합성된 촉매는 가장 큰 비표면적인 214 m2 g-1을 가졌으며 H2, CO-TPR 분석에서 가장 우수한 환원성과 격자산소 종의 활성을 보였으며 일산화탄소의 승온 및 등온 산화반응에서 가장 우수한 촉매활성을 나타내었다. 이것은 촉매의 물리화학적 특성에 기인한 것으로 촉매의 결정구조, 비표면적, 환원성 및 격자산소 종의 활성은 촉매활성과 깊은 상관관계가 존재함을 확인하였다.
MnO2 was prepared by a hydrothermal process method in the range of 120-200 ℃ and 0.5-5 h, calcined at 300 ℃ after induction of precipitation using KMnO4 and MnCl2?H2O, and its catalytic activity was compared for CO oxidation. The catalysts were characterized using by X-ray diffraction, N2-sorption, scanning electron microscopy, and temperature programmed reduction of H2 or CO. The crystalline structure of pure α-MnO2 or hybrid α/β-MnO2 was controlled by the preparation conditions. The pure α-MnO2 showed better catalytic activity and thermal stability than hybrid α/β-MnO2. Especially, α-MnO2 prepared at 150 ℃ for 1 h has the highest specific surface area 214 m2 g-1, reducibility and labile lattice oxygen species analyzed by H2, CO-TPR, respectively. It also showed the best CO oxidation activity in both conditions of temperature programmed and isothermal reaction. The results came from the physicochemical properties of catalysts like the crystalline structure, specific surface area, reducibility and lattice oxygen species, and which are correlated with catalytic performance.
  1. Park JH, Kim YJ, Cho KH, Kim ES, Shin CH, Clean Technol., 17(1), 41 (2011)
  2. Chen SF, Li JP, Qian K, Xu WP, Lu Y, Huang WX, Yu SH, Nano Res., 3, 244 (2010)
  3. Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Goodman DW, Surf. Sci., 601, 5326 (2007)
  4. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B, J. Catal., 144, 175 (1993)
  5. Shapovalov V, Metiu H, J. Catal., 245(1), 205 (2007)
  6. Xu J, White T, Li P, He CH, Yu JG, Yuan WK, Han YF, J. Am. Chem. Soc., 132(30), 10398 (2010)
  7. Park JY, Zhang Y, Grass M, Zhang T, Somorjai GA, Nano Lett., 8, 673 (2008)
  8. Lin HK, Chiu HC, Tsai HC, Chien SH, Wang CB, Catal. Lett., 88(3-4), 169 (2003)
  9. Jansson J, J. Catal., 194(1), 55 (2000)
  10. Xie X, Li Y, Liu ZQ, Haruta M, Shen W, Nature, 458, 746 (2009)
  11. Rida K, Lopez Camara A, Pena MA, Bolivar-Diaz CL, Martinez-Arias A, Int. J. Hydrog. Energy, 40, 11267 (2015)
  12. Cai L, Hu Z, Branton P, Li W, Chin. J. Catal., 35, 159 (2014)
  13. Tan ZD, Tan HY, Shi XY, Zhuan J, Yan YF, Yin Z, Inorg. Chem. Commun., 61, 128 (2015)
  14. Zhao Y, Jiang P, Colloids Surf. A: Physicochem. Eng. Asp., 444, 232 (2014)
  15. Patil UM, Sohn JS, Kulkarni SB, Park HG, Jung Y, Gurav KV, Kim JH, Jun SC, Mater. Lett., 119, 135 (2014)
  16. Wu CH, Ma JS, Lu CH, Curr. Appl. Phys., 12(4), 1058 (2012)
  17. Lv Y, Li H, Xie Y, Li S, Li J, Xing Y, Song Y, Particuology, 15, 34 (2014)
  18. Stobbe ER, de Boer BA, Geus JW, Catal. Today, 47(1-4), 161 (1999)
  19. Chang CL, Lin YC, Bai H, Liu YH, Korean J. Chem. Eng., 26, 1047 (2010)
  20. Lee YS, Park JS, Oh KJ, Clean Technol., 2(1), 60 (1996)
  21. Feng Q, Kanohb H, Ooi K, J. Mater. Chem., 9, 319 (1998)
  22. Botkovitz P, Deniard P, Tournoux M, Brec R, J. Power Sources, 43-44, 657 (1993)
  23. Subramanian V, Zhu HW, Wei BQ, Chem. Phys. Lett., 453(4-6), 242 (2008)
  24. Liang S, Teng F, Bulgan G, Zong R, Zhu Y, J. Phys. Chem. C, 112, 5307 (2008)
  25. Li Q, Luo G, Li J, Xia X, J. Mater. Process. Technol., 137, 25 (2003)
  26. Okitsu K, Iwatani M, Nanzai B, Nishimura R, Maeda Y, Ultrason. Sonochem., 16, 387 (2009)
  27. Lee JH, Ham JY, Korean J. Chem. Eng., 23(5), 714 (2006)
  28. Tian ZR, Tong W, Wang JY, Duan NG, Krishnan VV, Suib SL, Science, 276(5314), 926 (1997)
  29. Barboux P, Tarascon JM, Shokoohi FK, J. Solid State Chem., 94, 185 (1991)
  30. Koksbang R, Barker J, Shi H, Saidi MY, Solid State Ion., 84(1-2), 1 (1996)
  31. Cho KH, Park JH, Shin CH, Clean Technol., 16(2), 132 (2010)
  32. Cao JL, Li GJ, Wang Y, Sun G, Wang XD, Hari B, Zhang ZY, J. Environ. Chem. Eng., 2, 477 (2014)
  33. Groen JC, Peffer LAA, Perez-Ramirez J, Microporous Mesoporous Mater., 60, 1 (2003)
  34. Somiya S, Hydrotherm. React. Mater. Sci. Eng., 22-26, 887 (1982)
  35. Yanagisawa K, Kim JH, Sakata C, Onda A, Sasabe E, Yamamoto T, Matamoros-Veloza Z, Rendon-Angeles JC, Z. Naturforsch, 65b, 1038 (2010)
  36. Tiano AL, Koenigsmann C, Santulli AC, Wong SS, Chem. Commun., 46, 8093 (2010)
  37. Zheng X, Lin T, Cheng G, Lan B, Sun M, Yu L, Adv. Powder Technol., 26, 622 (2015)
  38. Hasegawa Y, Fukumoto K, Ishima T, Yamamoto H, Sano M, Miyake T, Appl. Catal. B: Environ., 89(3-4), 420 (2009)
  39. Park JH, Kang DC, Park SJ, Shin CH, J. Ind. Eng. Chem., 25, 250 (2015)
  40. Ramesh K, Chen LW, Chen FX, Liu Y, Wang Z, Han YF, Catal. Today, 131(1-4), 477 (2008)