화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.2, 456-464, February, 2016
Graphene-ZnO nanocomposite for highly efficient photocatalytic degradation of methyl orange dye under solar light irradiation
E-mail:
A facile synthesis of graphene oxide-zinc oxide nanocomposite (GO-ZnO) was performed by using wet chemical method of graphene oxide and zinc acetate precursors. The nanocomposite was characterized and intercalated with Raman spectroscopy, FE-SEM, TEM, SAED and EDAX. The crystalline nature was studied from P-XRD, and surface area of the sample was analyzed by BET. The chemical composition was explained in the light of XPS phenomenon. The photo electron-excitation (PL) studies were conducted for understanding the photocatalytic mechanism, and photocatalytic degradation of methyl orange was studied by using UV-VIS spectrophotometer. We investigated the photocatalytic activity involving GO-ZnO nanocomposite besides checking the re-stability of the composite. Significant high-performance photocatalytic activity of GO-ZnO nanocomposite was exhibited on methyl orange degradation under solar light.
  1. Soylak M, Erdogan ND, J. Hazard. Mater., 137(2), 1035 (2006)
  2. Uluozlu OD, Tuzen M, Mendil D, Soylak M, J. Hazard. Mater., 176(1-3), 1032 (2010)
  3. Qin JQ, Zhang XY, Xue YN, Kittiwattanothai N, Kongsittikul P, Rodthongkum N, Limpanart S, Ma MZ, Liu RP, Appl. Surf. Sci., 321, 226 (2014)
  4. Seredych M, Mabayoje O, Bandosz TJ, J. Phys. Chem. C, 116, 2527 (2012)
  5. Seredych M, Mabayoje O, Kolesnnik MM, Krstic V, Bandosz TJ, J. Mater. Chem., 22, 7970 (2012)
  6. Tatsuma T, Saitoh S, Ngaotrakanwiwat P, Ohko Y, Fujishima A, Langmuir, 18(21), 7777 (2002)
  7. Woan K, Pyrgiotakis G, Sigmund W, Adv. Mater., 21(21), 2233 (2009)
  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA, Nature, 438, 197 (2005)
  9. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S, Nature, 446, 60 (2007)
  10. Katsnelson MI, Novoselov KS, Solid State Commun., 143, 3 (2007)
  11. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS, Nat. Mater., 6(9), 652 (2007)
  12. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
  13. Srinivas G, Burress JW, Ford J, Yildirim T, J. Mater. Chem., 21, 1323 (2011)
  14. Seredych M, Mabayoje O, Bandosz TJ, Langmuir, 28(2), 1337 (2012)
  15. Seredych M, Mabayoje O, Bandosz TJ, J. Phys. Chem. C, 116, 2527 (2012)
  16. Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132 (2010)
  17. Yang ST, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A, J. Colloid Interface Sci., 357, 122 (2010)
  18. Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS, ACS Nano, 4, 3979 (2010)
  19. Chandra V, Kim KS, Chem. Commun., 47, 3942 (2011)
  20. Petit C, Seredych M, Bandosz TJ, J. Mater. Chem., 19, 9176 (2009)
  21. Seredych M, Bandosz TJ, Chem. Eng. J., 166(3), 1032 (2011)
  22. Seredych M, Bandosz TJ, J. Phys. Chem. C, 114, 14552 (2010)
  23. Bashkova S, Bandosz TJ, J. Ind. Eng. Chem. Res., 48, 10884 (2009)
  24. Seredych M, Mabayoje O, Bandosz TJ, Langmuir, 28(2), 1337 (2012)
  25. Matsuo Y, Nishino Y, Fukutsuka T, Sugie Y, Carbon, 46, 1162 (2008)
  26. Morishige K, Hamada T, Langmuir, 21(14), 6277 (2005)
  27. Zhao YX, Ding HL, Zhong Q, Appl. Surf. Sci., 258(10), 4301 (2012)
  28. Levasseur B, Petit C, Bandosz TJ, ACS Appl. Mater. Interfaces, 2, 3606 (2010)
  29. Petit C, Bandosz TJ, Adv. Funct. Mater., 20(1), 111 (2010)
  30. Zan X, Fang Z, Wu J, Xiao F, Huo F, Duan H, Biosens. Bioelectron., 49, 71 (2013)
  31. Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS, Nano Lett., 12, 1806 (2012)
  32. Zhu M, Chen P, Liu M, ACS Nano, 5, 4529 (2011)
  33. Bu Y, Chen Z, Li W, Hou B, ACS Appl. Mater. Interfaces, 5, 12361 (2013)
  34. Wang YW, Cao A, Jiang Y, Zhang X, Liu JH, Liu Y, Wang H, ACS Appl. Mater. Interfaces, 6, 2791 (2014)
  35. Ameen S, Akhtar M, Song M, Shin HS, ACS Appl. Mater Interfaces, 4, 4405 (2012)
  36. Li JY, Li H, Nanoscale Research Lett., 4, 165 (2009)
  37. Lee J, Nam SC, Tak Y, Korean J. Chem. Eng., 22(1), 161 (2005)
  38. Peng F, Zhu H, Wang H, Yu H, Korean J. Chem. Eng., 24(6), 1022 (2007)
  39. Hong E, Choi T, Kim JH, Korean J. Chem. Eng., 32(3), 424 (2015)
  40. Chaudhari SP, Bodade AB, Chaudhari GN, Korean J. Chem. Eng., 30(11), 2001 (2013)
  41. Hirakawa T, Kamat PV, J. Am. Chem. Soc., 127(11), 3928 (2005)
  42. Subramanian V, Wolf EE, Kamat PV, J. Am. Chem. Soc., 126(15), 4943 (2004)
  43. Zhang C, Zhang J, Su Y, Xu M, Yang Z, Zhang Y, Physica E, 56, 251 (2014)
  44. Li BX, Liu TX, Wang YF, Wang ZF, J. Colloid Interface Sci., 377, 114 (2012)
  45. Kim SR, Parvez MK, Chhowalla M, Chem. Phys. Lett., 483(1-3), 124 (2009)
  46. Zhou X, Shi TJ, Zhou HO, Appl. Surf. Sci., 258(17), 6204 (2012)
  47. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
  48. Bu Y, Chen Z, Li W, Hou B, ACS Appl. Mater. Interfaces, 5, 12361 (2013)
  49. Ye XY, Zhou YM, Sun YQ, Chen J, Wang ZQ, J. Nanopart. Res., 11, 1159 (2009)
  50. Guo J, Ren LL, Wang RY, Zhang C, Yang Y, Liu TX, Composites. Part B, 42, 2130 (2011)
  51. Kudin KN, Ozbas B, Schniepp HC, Prudhomme RK, Aksay IA, Car R, Nano Lett., 8, 36 (2008)
  52. Adhikari B, Biswas A, Banerjee A, Langmuir, 28(2), 1460 (2012)
  53. Wang F, Zhang K, J. Mol. Catal. A-Chem., 345(1-2), 101 (2011)
  54. Gao EP, Wang WZ, Shang M, Xu JH, Phys. Chem. Chem. Phys., 13, 2887 (2011)
  55. Ahmad M, Ahmed E, Hong ZL, Xu JF, Khalid NR, Elhissi A, Ahmed W, Appl. Surf. Sci., 274, 273 (2013)
  56. Luan VH, Tien HN, Hur SH, J. Colloid Interface Sci., 437, 181 (2015)
  57. Ahmad M, Ahmed E, Hong ZL, Khalid NR, Ahmed W, Elhissi A, J. Alloy. Compd., 577, 717 (2013)