화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.33, 91-98, January, 2016
Pd-Au nanoparticles supported by TiO2 fibers for catalytic NO decomposition by CO
E-mail:
Pd-Au nanoparticles supported by TiO2 fibers were fabricated and assembled into a porous medium. The 2-16 nm Pd-Au nanoparticles were randomly dispersed in the titania nanofibers (da = 117 ± 68 nm). Xray diffraction patterns and X-ray photoelectron spectroscopy verified the formation of Pd-Au particles. Binding energy shifts were detected due to chemical bonding and reduction with hydrazine monohydrate. The fiber media with Pd-Au nanoparticles had greater reactivity in conversion of NO and CO gases than Pd monometallic catalyst alone, attributed to a lower activation energy of the reaction on the Pd-Au catalyst particles.
  1. Yao X, Gao F, Cao Y, Tang C, Deng Y, Dong L, Chen Y, Phys. Chem. Chem. Phys., 15, 14945 (2013)
  2. Armor JN, Appl. Catal. B: Environ., 1, 221 (1992)
  3. Fino D, Russo N, Saracco G, Specchia V, J. Catal., 242(1), 38 (2006)
  4. Courtemanche B, Levendis YA, Fuel, 77(3), 183 (1998)
  5. Parvulescu VI, Grange P, Delmon B, Catal. Today, 46(4), 233 (1998)
  6. Heck RM, Farrauto RJ, Gulati ST, Automotive Catalyst, John Wiley & Sons, Inc., 2009p. 101.
  7. Armor JN, Catal. Today, 26(2), 99 (1995)
  8. Fu Y, Tian Y, Lin P, J. Catal., 132, 85 (1991)
  9. Kaspar J, Fornasiero P, Hickey N, Catal. Today, 77(4), 419 (2003)
  10. Hu Z, Wan CZ, Lui YK, Dettling J, Steger JJ, Catal. Today, 30(1-3), 83 (1996)
  11. Cybulski A, Moulijn JA, Catal. Rev.-Sci. Eng., 36(2), 179 (1994)
  12. Iwamoto M, Hamada H, Catal. Today, 10, 57 (1991)
  13. Miyoshi N, Matsumoto SI, Katoh K, Tanaka T, Harada J, Takahashi N, Yokota K, Sugiura M, Kasahara K, Development of New Concept Three-way Catalyst for Automotive Lean-burn Engines. SAE Technical Paper, 1995.
  14. Su EC, Rothschild WG, J. Catal., 99, 506 (1986)
  15. Park SJ, Bhargava S, Bender ET, Chase GG, Ramsier RD, J. Mater. Res., 23, 1193 (2008)
  16. Swaminathan S, Chase GG, in: Lin T (Ed.), Nanofibers-production, Properties and Functional Applications, Intech Open Access Publisher, 2011, (Chapter 3), http://www.intechopen.com/articles/show/title/electrospinning-of-metal-doped-alumina-nanofibers-for-catalyst-applications.
  17. Park SJ, Kang YC, Ramsier RD, Jeong KU, Chase GG, J. Nanosci. Nanotechnol., 10, 5225 (2010)
  18. Shahreen L, Chase GG, Turinske AJ, Nelson SA, Stojilovic N, Chem. Eng. J., 225, 340 (2013)
  19. Macleod N, Keel JM, Lambert RM, Appl. Catal. A: Gen., 261(1), 37 (2004)
  20. Han YF, Wang JH, Kumar D, Yan Z, Goodman DW, J. Catal., 232(2), 467 (2005)
  21. Solsona BE, Edwards JK, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ, Chem. Mater., 18, 2689 (2006)
  22. Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ, J. Catal., 236(1), 69 (2005)
  23. Nutt MO, Heck KN, Alvarez P, Wong MS, Appl. Catal. B: Environ., 69(1-2), 115 (2006)
  24. Venezia AM, La Parola V, Deganello G, Pawelec B, Fierro JLG, J. Catal., 215(2), 317 (2003)
  25. Yang X, Du L, Liao S, Li Y, Song H, Catal. Commun., 17, 29 (2012)
  26. Baddeley CJ, Tikhov M, Hardacre C, Lomas JR, Lambert RM, J. Phys. Chem., 100(6), 2189 (1996)
  27. Gao F, Wang YL, Goodman DW, J. Am. Chem. Soc., 131(16), 5734 (2009)
  28. Yi CW, Luo K, Wei T, Goodman DW, J. Phys. Chem. B, 109(39), 18535 (2005)
  29. Gao F, Goodman DW, Chem. Soc. Rev., 41, 8009 (2012)
  30. Chen M, Kumar D, Yi CW, Goodman DW, Science, 310, 291 (2005)
  31. Samanta A, Rajesh T, Devi RN, J. Mater. Chem. A, 2, 4398 (2014)
  32. Qian K, Huang WX, Catal. Today, 164(1), 320 (2011)
  33. Edwards JK, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ, Faraday Discuss., 138, 225 (2008)
  34. Xu J, White T, Li P, He CH, Yu JG, Yuan WK, Han YF, J. Am. Chem. Soc., 132(30), 10398 (2010)
  35. Chase GG, Nartetamrongsutt K, Shin HU, Simple Device for Economically Producing Electrospun Fibers at Moderate Rates, US Patent 20,150,158,230 (2015).
  36. Shin HU, Stefaniak AB, Stojilovic N, Chase GG, Environ. Sci. -Nano, 2, 251 (2015)
  37. Reneker DH, Yarin AL, Polymer, 49(10), 2387 (2008)
  38. Reneker DH, Yarin AL, Fong H, Koombhongse S, J. Appl. Phys., 87, 4531 (2000)
  39. Shin HU, Li Y, Paynter A, Nartetamrongsutt K, Chase GG, Polymer, 65, 26 (2015)
  40. Shin HU, Li Y, Paynter A, Nartetamrongsutt K, Chase GG, Data Brief, 5, 41 (2015)
  41. Demir MM, Gulgun MA, Menceloglu YZ, Erman B, Abramchuk SS, Makhaeva EE, Khokhlov AR, Matveeva VG, Sulman MG, Macromolecules, 37(5), 1787 (2004)
  42. Wu ML, Chen DH, Huang TC, Langmuir, 17(13), 3877 (2001)
  43. Hwang SY, Zhang C, Yurchekfrodl E, Peng Z, J. Phys. Chem. C, 118, 28739 (2014)
  44. Li F, Guo Y, Li R, Wu F, Liu Y, Sun X, Li C, Wang W, Gao J, J. Mater. Chem. A, 1, 6579 (2013)
  45. Zhan G, Huang J, Du M, Abdul-Rauf I, Ma Y, Li Q, Mater. Lett., 65, 2989 (2011)
  46. Webb P, Orr C, Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corp., Norcross, GA, 1997.
  47. Babaei A, Jiang SP, Li J, J. Electrochem. Soc., 156(9), B1022 (2009)
  48. Voogt EH, Mens AJM, Gijzeman OLJ, Geus JW, Surf. Sci., 350, 21 (1996)
  49. Jovic V, Chen WT, Sun-Waterhouse D, Blackford MG, Idriss H, Waterhouse GIN, J. Catal., 305, 307 (2013)
  50. Fuchs P, Marti K, Russi S, Metrologia, 49, 615 (2012)
  51. Li Z, Gao F, Wang Y, Calaza F, Burkholder L, Tysoe WT, Surf. Sci., 601, 1898 (2007)
  52. Nishimura S, Yakita Y, Katayama M, Higashimine K, Ebitani K, Catal. Sci. Technol., 3, 351 (2013)
  53. Cho BK, J. Catal., 138, 255 (1992)
  54. Pisanu AS, Gigola CE, Appl. Catal. B: Environ., 20(3), 179 (1999)
  55. Zhang J, Jin H, Sullivan MB, Lim FCH, Wu P, Phys. Chem. Chem. Phys., 11, 1441 (2009)