화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.33, 316-325, January, 2016
Crystallization behavior of tantalum and chlorine co-substituted hydroxyapatite nanopowders
E-mail:
The crystallization behavior of tantalum and chlorine co-substituted hydroxyapatite nanopowders was examined. Results showed that combined processing by mechanical alloying and annealing is conducive to the structural changes and crystal growth. A series of nanocrystalline tantalum and chlorine cosubstituted hydroxyapatite (Ta/Cl-HA) with different dopant contents were synthesized as a result of the progressive mechanochemical reaction. During the subsequent annealing, crystallization of the asmilled powders occurred, leading to a significant increase in the fraction of crystalline phase. TEM images revealed that the crystallized and doped nanopowders composed of crystalline nanoneedles with an average size of 61 ± 26 nm.
  1. Hench LL, J. Am. Ceram. Soc., 74, 1487 (1991)
  2. Dorozhkin SV, Materials, 2, 399 (2009)
  3. Dorozhkin SV, Materials, 2, 1975 (2009)
  4. Xu JL, Khor KA, Sui JJ, Chen WN, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 29, 44 (2009)
  5. Baradaran S, Moghaddam E, Nasiri-Tabrizi B, Basirun WJ, Mehrali M, Sookhakian M, Hamdi M, Alias Y, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 49, 656 (2015)
  6. Okada M, Furuzono T, Sci. Technol. Adv. Mater., 13, 1 (2012)
  7. Iafisco M, Morales JG, Hernandez-Hernandez MA, Garcıa-Ruiz JM, Roveri N, Adv. Eng. Mater., 12, B218 (2010)
  8. Supova M, Ceram. Int., 41, 9203 (2015)
  9. Pan Y, Fleet ME, in: Kohn MJ, Rakovan J, Hughes JM (Eds.), Phosphates: Geochemical, Geobiological and Material Importance, Reviews in Mineralogy and Geochemistry, vol. 48, Mineralogical Society of America, Washington, DC, 2002, p. 13.
  10. Lafon JP, Champion E, Bernache-Assollant D, J. Eur. Ceram. Soc., 28, 139 (2008)
  11. Wopenka B, Pasteris JD, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 25, 131 (2005)
  12. Skinner HCW, Mineral. Mag., 69, 621 (2005)
  13. Schlesinger PH, Blair HC, Teitalbaum SL, Edwards JC, J. Biol. Chem., 272, 18636 (1997)
  14. Merry JC, Gibson IR, Best SM, Bonfield W, J. Mater. Sci. -Mater. Med., 9, 779 (1998)
  15. Ciobanu G, Bargan AM, Luca C, Ceram. Int., 41, 12192 (2015)
  16. Zhou WY, Wang M, Cheung WL, Guo BC, Jia DM, J. Mater. Sci. -Mater. Med., 19, 103 (2008)
  17. Renaudin G, Jallot E, Nedelec JM, J. Sol-Gel Sci. Technol., 51, 287 (2009)
  18. Aminian A, Solati-Hashjin M, Samadikuchaksaraei A, Bakhshi F, Gorjipour F, Farzadi A, Moztarzadeh F, Schmucker M, Ceram. Int., 37, 1219 (2011)
  19. Nasiri-Tabrizi B, Fahami A, Mater. Lett., 134, 42 (2014)
  20. Alshemary AZ, Goh YF, Akram M, Razali IR, Kadir MRA, Hussain R, Mater. Res. Bull., 48(6), 2106 (2013)
  21. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A, Acta Biomater., 9, 7591 (2013)
  22. Nasiri-Tabrizi B, Honarmandi P, Ebrahimi-Kahrizsangi R, Mater. Lett., 63, 543 (2009)
  23. Balaz P, Mechanochemistry in Nanoscience and Minerals Engineering, 1st ed., Springer, Berlin Heidelberg, 2008.
  24. Fathi MH, Zahrani EM, J. Alloy. Compd., 475, 408 (2009)
  25. Fahami A, Nasiri-Tabrizi B, Ebrahimi-Kahrizsangi R, Mater. Lett., 110, 117 (2013)
  26. Nasiri-Tabrizi B, Fahami A, Ebrahimi-Kahrizsangi R, Ceram. Int., 40, 901 (2014)
  27. Dhal J, Bose S, Bandyopadhyay A, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 33, 3061 (2013)
  28. Ligot S, Godfroid T, Music D, Bousser E, Schneider JM, Snyders R, Acta Mater., 60, 3435 (2012)
  29. Suryanarayana C, Al-Aqeeli N, Prog. Mater. Sci., 58(4), 383 (2013)
  30. Takacs L, Prog. Mater. Sci., 47(4), 355 (2002)
  31. Suryanarayana C, Prog. Mater. Sci., 46(1-2), 1 (2001)
  32. Sun F, Froes FHS, J. Alloy. Compd., 340, 220 (2002)
  33. Rayalu SS, Udhoji JS, Meshram SU, Naidu RR, Devotta S, Curr. Sci., 89, 2147 (2005)
  34. Cullity BD, Elements of X-ray Diffraction, 2nd ed., Addison-Wesley, Boston, MA, 1978.
  35. Smith WF, Hashemi J, Crystal Structures and Crystal Geometry, McGraw-Hill Science, New York, 2004p. 67.
  36. Vannice MA, Kinetics of Catalytic Reactions, 1st ed., Springer, US, 2005.
  37. Zhao JJ, Dong XC, Bian MM, Zhao JF, Zhang Y, Sun Y, Chen JH, Wang XH, Appl. Surf. Sci., 314, 1026 (2014)
  38. Liu Q, Matinlinna JP, Chen Z, Ning C, Ni G, Pan H, Darvell BW, Ceram. Int., 41, 6149 (2015)
  39. Maiti GC, Freund F, J. Inorg. Nucl. Chem., 43, 2633 (1981)
  40. Garcıa-Tunon E, Dacuna B, Zaragoza G, Franco J, Guitian F, Acta Crystallogr. Sect. B-Struct. Sci., 68, 467 (2012)
  41. Wang PP, Li CH, Gong HY, Jiang XR, Wang HQ, Li KX, Powder Technol., 203(2), 315 (2010)
  42. Suchanek WL, Shuk P, Byrappa K, Riman RE, Tenhuisen KS, Janas VF, Biomaterials, 23, 699 (2002)
  43. Nadeem K, Rahman S, Mumtaz M, Prog. Nat. Sci., 25, 111 (2015)
  44. Lia ZY, Lama WM, Yangb C, Xub B, Nia GX, Abbaha SA, Cheunga KMC, Luka KDK, Lua WW, Biomaterials, 28, 1452 (2007)
  45. De Castro CL, Mitchell BS, in: Baraton MI (Ed.), Nanoparticles from Mechanical Attrition, American Scientific Publishers, Valencia, 2002.
  46. Champion E, Acta Biomater., 9, 5855 (2013)