Korean Chemical Engineering Research, Vol.54, No.1, 114-119, February, 2016
박테리아 셀룰로오스 기반 전도성 막의 전도도 향상을 위한 PEDOT:PEG와 황산혼합액 코팅의 영향
Effect of Coating with the Mixture of PEDOT:PEG and Sulfuric Acid to Enhance Conductivity of Bacterial Cellulose Platform Film
E-mail:
초록
본 연구에서는 박테리아 셀룰로오스(BC)와 같은 천연고분자에 전도성 고분자 PEDOT:PEG와 graphene, 은나노와이어(AgNW)를 코팅하여 전도성을 부여하고자 하였다. 미리 PEDOT:PEG와 황산을 10~20%를 혼합하여 그 용액을 전자 스핀 코팅으로 BC 기판에 코팅하였다. 그 후, 전도성을 향상시키고자 graphene과 AgNW로 코팅하여 hall effect로 측정하였다. 그 결과, 대조군 PEDOT:PEG로 코팅한 BC 막의 전자농도(2.487×1010/cm3)에 비해 PEDOT:PEG에 황산을 10%로 혼합하여 코팅시킨 BC막(8.093×1015/cm3) 쪽이 3.25x105배 높은 값을 나타내는 것으로 전도도가 대폭 향상되었음을 알 수 있었다. 또한, SEM분석으로 PEDOT:PEG가 황산처리에 의해 폴리머 형상으로 변화된 것을 확인 할 수 있었다. 분자구조의 변화를 FTIR분석결과 1200 cm-1 파장의 S-O그룹이 황산처리 전에 비해 황산 혼합한 쪽에서 크게 상승된 것이 확인되었다. 이 방법을 이용하여 소량의 PEDOT:PEG사용으로 투명성을 확보할 수 있으며 미리 황산을 처리하는 것으로 제조공정을 단순하게 할 것으로 사료된다.
In this study, we tried to add the conductivity to natural polymer like bacterial cellulose (BC) coated with the conductive polymer PEDOT:PEG, graphene and silver nano-wire (AgNW). Sulfuric acid of 10 to 20% was previously mixed with PEDOT:PEG and then the solution was electron spin-coated on the BC membrane. And then, additive coating with graphene and AgNW were done to improve conductivity, which was examined by hall effect. As the result, we confirmed a considerable improvement of conductivity compared to BC-coated film without sulfuric acid treatment as 2.487×1010 vs 8.093×1015 (1/cm3), showing higher electron density with 3.25×105 times. Also, we identified that changed particle type to the polymer type by sulfuric acid using SEM analysis. For FT-IR analysis, it was confirmed that S-O radical (1200 cm-1) increased in the sulfuric acid treatment than non-treated sulfuric acid. As the method used very small amount of PEDOT:PEG, its transparency could be kept, and pre-treatment process of sulfuric acid will be able to simplify the production process.
- Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG, Phys. Rev. Lett., 39, 1098 (1977)
- Skotheim TA, Elsenbaumer RL, Reynolds JR, Handbook of Conducting Polymers 2nd ed., Marcel Dekker, New York, NY (1998).
- Skotheim T, Handbook of Conducting Polymers, Dekker, New York, NY(1986).
- AIP Series in Polymers and Complex Materials, in Physical Properties of Polymers Handbook, AIP Press, New York, NY(1996).
- Satas D, Tracton AA, Coatings Technology Handbook, Marcel Dekker, New York, NY(2001).
- Kim JY, Jung JH, Lee DE, Joo J, Synth. Met., 126, 311 (2002)
- Ouyang J, Xu QF, Chu CW, Yang Y, Li G, Shinar J, Polymer, 45(25), 8443 (2004)
- Nardes AM, Janssen RAJ, Kemerink M, Adv. Funct. Mater., 18(6), 865 (2008)
- Kim N, Kee S, Lee SH, Lee BH, Kahng YH, Jo YR, Kim BJ, Lee K, Adv. Mater., 26(14), 2268 (2014)
- Yim EC, Kim SJ, Kee CD, Korean Chem. Eng. Res., 51(6), 766 (2013)
- Park HS, Chang SH, Smith M, Gradecak S, Kong J, "Interface Engineering of Graphene for Universal Applocations as Both Anode and Cathode in Organic Photovoltaics," Scientific Report. 3:1581, DOI: 10.1038(2013).
- Son YJ, Sul OJ, Chung DK, Han IS, Choi YJ, Jeong CS, J. Appl. Microbiol. Biotechnol., 25, 346 (1997)
- Son CJ, Chung SY, Lee JE, Kim SJ, J. Appl. Microbiol. Biotechnol., 12, 722 (2002)
- Alexander WJ, Mitchell RL, Anal. Chem., 21, 1497 (1949)
- Quan B, Yu SH, Chung DY, Jin A, Park JH, Sung YE, Piao YZ, “Single Source Precursor-based Solvothermal Synthesis of Heteroatom-doped Graphene and Its Energy Storage and Conversion Applications,” Scientific Report. 4: 5639, DOI: 10.1038 (2014).