화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.54, No.1, 114-119, February, 2016
박테리아 셀룰로오스 기반 전도성 막의 전도도 향상을 위한 PEDOT:PEG와 황산혼합액 코팅의 영향
Effect of Coating with the Mixture of PEDOT:PEG and Sulfuric Acid to Enhance Conductivity of Bacterial Cellulose Platform Film
E-mail:
초록
본 연구에서는 박테리아 셀룰로오스(BC)와 같은 천연고분자에 전도성 고분자 PEDOT:PEG와 graphene, 은나노와이어(AgNW)를 코팅하여 전도성을 부여하고자 하였다. 미리 PEDOT:PEG와 황산을 10~20%를 혼합하여 그 용액을 전자 스핀 코팅으로 BC 기판에 코팅하였다. 그 후, 전도성을 향상시키고자 graphene과 AgNW로 코팅하여 hall effect로 측정하였다. 그 결과, 대조군 PEDOT:PEG로 코팅한 BC 막의 전자농도(2.487×1010/cm3)에 비해 PEDOT:PEG에 황산을 10%로 혼합하여 코팅시킨 BC막(8.093×1015/cm3) 쪽이 3.25x105배 높은 값을 나타내는 것으로 전도도가 대폭 향상되었음을 알 수 있었다. 또한, SEM분석으로 PEDOT:PEG가 황산처리에 의해 폴리머 형상으로 변화된 것을 확인 할 수 있었다. 분자구조의 변화를 FTIR분석결과 1200 cm-1 파장의 S-O그룹이 황산처리 전에 비해 황산 혼합한 쪽에서 크게 상승된 것이 확인되었다. 이 방법을 이용하여 소량의 PEDOT:PEG사용으로 투명성을 확보할 수 있으며 미리 황산을 처리하는 것으로 제조공정을 단순하게 할 것으로 사료된다.
In this study, we tried to add the conductivity to natural polymer like bacterial cellulose (BC) coated with the conductive polymer PEDOT:PEG, graphene and silver nano-wire (AgNW). Sulfuric acid of 10 to 20% was previously mixed with PEDOT:PEG and then the solution was electron spin-coated on the BC membrane. And then, additive coating with graphene and AgNW were done to improve conductivity, which was examined by hall effect. As the result, we confirmed a considerable improvement of conductivity compared to BC-coated film without sulfuric acid treatment as 2.487×1010 vs 8.093×1015 (1/cm3), showing higher electron density with 3.25×105 times. Also, we identified that changed particle type to the polymer type by sulfuric acid using SEM analysis. For FT-IR analysis, it was confirmed that S-O radical (1200 cm-1) increased in the sulfuric acid treatment than non-treated sulfuric acid. As the method used very small amount of PEDOT:PEG, its transparency could be kept, and pre-treatment process of sulfuric acid will be able to simplify the production process.
  1. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG, Phys. Rev. Lett., 39, 1098 (1977)
  2. Skotheim TA, Elsenbaumer RL, Reynolds JR, Handbook of Conducting Polymers 2nd ed., Marcel Dekker, New York, NY (1998).
  3. Skotheim T, Handbook of Conducting Polymers, Dekker, New York, NY(1986).
  4. AIP Series in Polymers and Complex Materials, in Physical Properties of Polymers Handbook, AIP Press, New York, NY(1996).
  5. Satas D, Tracton AA, Coatings Technology Handbook, Marcel Dekker, New York, NY(2001).
  6. Kim JY, Jung JH, Lee DE, Joo J, Synth. Met., 126, 311 (2002)
  7. Ouyang J, Xu QF, Chu CW, Yang Y, Li G, Shinar J, Polymer, 45(25), 8443 (2004)
  8. Nardes AM, Janssen RAJ, Kemerink M, Adv. Funct. Mater., 18(6), 865 (2008)
  9. Kim N, Kee S, Lee SH, Lee BH, Kahng YH, Jo YR, Kim BJ, Lee K, Adv. Mater., 26(14), 2268 (2014)
  10. Yim EC, Kim SJ, Kee CD, Korean Chem. Eng. Res., 51(6), 766 (2013)
  11. Park HS, Chang SH, Smith M, Gradecak S, Kong J, "Interface Engineering of Graphene for Universal Applocations as Both Anode and Cathode in Organic Photovoltaics," Scientific Report. 3:1581, DOI: 10.1038(2013).
  12. Son YJ, Sul OJ, Chung DK, Han IS, Choi YJ, Jeong CS, J. Appl. Microbiol. Biotechnol., 25, 346 (1997)
  13. Son CJ, Chung SY, Lee JE, Kim SJ, J. Appl. Microbiol. Biotechnol., 12, 722 (2002)
  14. Alexander WJ, Mitchell RL, Anal. Chem., 21, 1497 (1949)
  15. Quan B, Yu SH, Chung DY, Jin A, Park JH, Sung YE, Piao YZ, “Single Source Precursor-based Solvothermal Synthesis of Heteroatom-doped Graphene and Its Energy Storage and Conversion Applications,” Scientific Report. 4: 5639, DOI: 10.1038 (2014).