Applied Chemistry for Engineering, Vol.27, No.1, 16-20, February, 2016
이산화 티타늄/마이카 복합 재료의 적외선 광반사 특성
Synthesis and Infrared Light Reflecting Characteristics of TiO2/Mica Hybrid Composites
E-mail:
초록
본 연구에서는 TiO2/마이카 혼성 복합 재료의 합성과 적외선 반사 특성에 관한 연구를 수행하였다. 마이카 입자의 존재 하에 아세트산 수용액에서 titanium isopropoxide의 가수 분해 반응과 축합 반응에 의해 TiO2/마이카 복합 재료를 합성하였다. TiO2/마이카 복합 재료의 열처리(600∼1000 ℃, 1∼3 h)에 의해 마이카 표면에 형성된 비결정성 상의 TiO2 은 anatase 상을 거쳐 결정성 rutile 상으로 전환되었으며 열처리 조건에 의해 결정의 크기가 제어되었다. FE-SEM 분석, ED-XRF 분석, XRPD 분석을 통하여 마이카와 TiO2/마이카 복합 재료의 물리화학적 특성을 규명하였다. 확산 반사-근적외선 분광 분석을 통하여 측정한 TiO2/마이카 혼성 복합 재료의 근적외선 범위(780∼2,500 nm)에서의 일사 반사율은 88.6%로, 순수한 소성 마이카의 86.6%보다 다소 높았다. 따라서 TiO2/마이카 혼성 복합 재료는 높은 광반사율을 나타내는 차열 도료의 안료로 사용할 수 있을 것이다.
In this work, we describe the synthesis and infrared light reflecting characteristics of TiO2/mica hybrid composites. TiO2/mica composite materials were obtained by the hydrolysis and condensation reaction of titanium isopropoxide in an aqueous solution of acetic acid in the presence of mica particles. Amorphous phase of TiO2 on the surface of mica was converted to the crystalline rutile phase via anatase phase by heat treatment (600-1000 ℃, 1-3 h) of TiO2/mica composite materials, and the size of crystals was controlled by heat treatment conditions. Physicochemical properties of mica and TiO2/mica composites were investigated using FE-SEM, ED-XRF, and PXRD. The solar reflectance of TiO2/mica composites in the near IR region (780∼2,500 nm) measured using a diffuse reflectance NIR spectrophotometer was 88.6%, which is rather higher than that of calcined pure mica (86.6%). Therefore, TiO2/mica composites can be used as NIR light reflective pigments.
- Kochevar IE, Pathak MA, Parrish JA, Photophysics, photochemistry, and photobiology. In: Freedberg IM, Eisen AZ, Katz SI, Wolff K, Goldsmith LA, Austen KF, Fitzpatrick TB (eds.). Fitzpatrick’s Dermatology in General Medicine, 5th ed. 220-229, McGraw-Hill, New York, USA (1999).
- Kim HH, Int. J. Remote Sensing, 13, 2319 (1992)
- Matsuo Y, New developments of high-reflective materials, 3-12, CMC, Tokyo, Japan (2010).
- Dahl M, Liu YD, Yin YD, Chem. Rev., 114(19), 9853 (2014)
- Sang LX, Zhao YX, Burda C, Chem. Rev., 114(19), 9283 (2014)
- Cargnello M, Gordon TR, Murray CB, Chem. Rev., 114(19), 9319 (2014)
- Jeevanandam P, Mulukutla RS, Phillips M, Chaudhuri S, Erickson LE, Klabunde KJ, J. Phys. Chem. C, 111, 1912 (2007)
- Wu HX, Wang TJ, Jin Y, Ind. Eng. Chem. Res., 45(15), 5274 (2006)
- Zou J, Zhang P, Liu C, Peng Y, Dyes Pigment., 109, 113 (2014)
- Hedayati HR, Alvani AAS, Sameie H, Salimi R, Moosakhani S, Tabatabaee F, Zarandi AA, Dyes Pigment., 113, 588 (2015)
- Jose S, Prakash A, Laha S, Natarajan S, Reddy ML, Dyes Pigment., 107, 118 (2014)
- Kumar S, Verma NK, Singla ML, J. Mater. Res., 28, 521 (2013)
- Kiomarsipour N, Razavi RS, Ghani K, Kioumarsipour M, Appl. Surf. Sci., 270, 33 (2013)
- Panpranot J, Kontapakdee K, Praserthdam P, J. Phys. Chem. B, 110(15), 8019 (2006)
- Yang S, Zheng YC, Hou Y, Yang XH, Yang HG, Phys. Chem. Chem. Phys., 16, 23038 (2014)
- Koparde VN, Cummings PT, ACS Nano, 2, 1620 (2008)
- Kumar S, Verma NK, Singla ML, Dig. J. Nanomater. Bios., 7, 607 (2012)
- Vargas WE, J. Appl. Phys., 88, 4079 (2000)
- Oh JM, Biswick TT, Choy JH, J. Mater. Chem., 19, 2553 (2009)
- Carretero MI, Pozo M, Appl. Clay Sci., 47, 171 (2010)
- Cavalcante PMT, Dondi M, Guarini G, Barros FM, da Luz AB, Dyes Pigment., 74, 1 (2007)
- Murray HH, Appl. Clay Sci., 17, 207 (2000)
- Gao Q, Wu X, Fan Y, Dyes Pigment., 109, 90 (2014)
- Kaneko T, Fujii M, Kodama T, Kitayama Y, J. Porous Mat., 8, 99 (2001)
- Marcos C, Arango YC, Rodriguez I, Appl. Clay Sci., 42, 368 (2009)
- Yang JH, Piao H, Vinu A, Elzatahry AA, Paek SM, Choy JH, RSC Adv., 5, 8210 (2015)
- Finocchio E, Baccini I, Cristiani C, Dotelli G, Stampino PG, Zampori L, J. Phys. Chem. A, 115, 7484 (2011)
- Clevers JGPW, Kooistra L, Schaepman ME, Int. J. Appl. Earth Obs. Geoinf., 10, 388 (2008)
- Thongkanluang T, Chirakanphaisarn N, Limsuwan P, Procedia Eng., 32, 895 (2012)