Applied Chemistry for Engineering, Vol.27, No.1, 39-44, February, 2016
인-질소 화합물 조합에 의해 처리된 목재의 연소성
Combustion Properties of Wood Treated by Combining Phosphorus-Nitrogen Compounds
E-mail:
초록
이 연구에서는 피로인산/암모늄이온, 메틸렌피페라지노메틸-비스-포스폰산, 메틸렌피페라지노메틸-비스-포스폰산/암모 늄이온의 화학 첨가제로 처리된 리기다 소나무의 연소 특성을 고찰하였다. 15 wt%의 화학 첨가제 수용액으로 각각 리기다 소나무에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 연소성을 시험하였다. 그 결과, 화학 첨가제로 처리한 시험편의 최대질량감소율도달시간(PMLR time)은 무처리 시험편에 비교하여 10.5~47.4% 지연되었다. 그리고 최대일산화탄소발생률(CO peak)은 무처리 시험편에 비교하여 32.1~71.4% 증가하였다. 또한 총연기방출률(TSRR)은 화학 첨가제로 처리한 시험편이 무처리한 시험편보다 15.6~43.6% 증가하였다. 특히, 단위면적당 연기 방출속도(RSR)에 대하여 PP/4NH4 +로 처리한 시험편을 제외하고, 무처리 시험편보다 29.4~41.5% 높게 나타났다. 이와 같이 유기성 화학 첨가제로 처리한 시험편은 연소억제 작용에 의하여 연소시간이 길어짐에 따라 연기방출률이 높았다. 그러나 PP/4NH4 +은 무기물 첨가제로서 일부 감연 작용을 하는 것으로 보인다. 따라서 화학 첨가제로 처리한 시험편은 무처리 시험편과 비교하여 연소가스 및 연기발생을 부분적으로 증가시켰다.
This study was to investigate the characteristics of combustion toxic gases of pinus rigida specimens treated with chemical additives such as pyrophosphoric acid (PP)/ammonuium ion (NH4 +), methylenepiperazinomethyl-bis-phosphonic acid (PIPEABP) and PIPEABP/NH4+. Each pinus rigida plates was painted in three times with 15 wt% of each chemical additives in the aqueous solution. After drying these specimens at room temperature, the production of combustion gases and smoke was examined by the cone calorimeter (ISO 5660-1). As a result, the peak mass loss rate time (PMLR time) treated with chemicals was delayed upto 10.5~47.4% compared to that of using untreated specimen. In addition, the peak production of carbon monoxide (CO peak) of 32.1~71.4% and total smoke release rate (TSRR) of 15.6~43.6% for test pieces treated with the chemical additive were higher than that of using the virgin plate. In particular, for the specimens treated with the chemical additive, the rate of smoke release (RSR) 29.4~41.5% was obtained higher than that of untreated plate except the specimen treated with PP/4NH4+. It can thus be concluded that the treatment using the chemical additive could partially increase the combustion-retardation properties of the species when compared to those of the virgin plate.
Keywords:Methylenepiperazinomethyl-bis-phosphonic acid (PIPEABP);total smoke release rate (TSRR);rate of smoke release (RSR);CO peak production
- Middleton JC, Dragoner SM, Winters FT, Fore. Prod. J., 15(12), 463 (1965)
- Goldstein IS, Dreher WA, Fore. Prod. J., 11(5), 235 (1961)
- Kozlowski R, Hewig M, 1st Int Conf., Progress in Flame Retardancy and Flammability Testing, Institute of Natural Fibres, Pozman, Poland (1995).
- Stevens R, Daan SE, Bezemer R, Kranenbarg A, Polym. Degrad. Stabil., 91(4), 832 (2006)
- Chung YJ, J. Korean Ind. Eng. Chem., 18(3), 251 (2007)
- Hardy ML, Polym. Degrad. Stabil., 64(3), 545 (1999)
- Tanaka Y, Epoxy Resin Chemistry and Technology, Marcel Dekker, New York (1988).
- ISO 5660-1, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method), Genever (2002).
- Babrauskas V, New Technology to reduce Fire Losses and Costs, eds. Grayson SJ, Smith DA, Elsevier Applied Science Publisher, London, UK. (1986).
- Hirschler MM, Thermal decomposition and chemical composition, 239, ACS Symp. Ser., 797, 293-306 (2001).
- Lee CH, Lee CW, Kim JW, Suh CK, Kim KM, Organic phosphorus-nitrogen compounds, manufacturing method and compositions of flame retardants containing organic phosphorus-nitrogen compounds, Korean Patent 2011-0034978 (2011).
- Grexa O, Horvathova E, Besinova O, Lehocky P, Polym. Degrad. Stabil., 64(3), 529 (1999)
- Cischem Com, Flame Retardants, Chischem. Com. Co., Ltd., Korea (2009).
- Choi JJ, Chung YJ, Kim SK, Shin DI, Lee BY, Park HJ, et. al., Development of Technology for Eco-Friendly Flame Retardant Agent and Retardant Treatment, NEMA Next Generation 2010-011, National Emergency Management Agency (2013).
- Chung YJ, Fire Sci. Eng., 29(6) (2015)
- Chung YJ, Jin E, J. Kor. Oil Chem. Soc., 30(1), 1 (2013)
- Kosha, Material Safety Data Sheet in Chemical Materials Information, Kosha, Korea (2014).
- Berns RS, Billmeyer and Saltszman’s Principles of Color Technology, Wiley Intersciences (2000).
- Simpso WT, Drying and Control of Moisture Content and Dimensional Changes, Chap. 12, Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. 1-21 (1987).
- Babrauskas V, The SFPE Handbook of Fire Protection Engineering, Fourth Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
- Spearpoint MJ, Quintiere JG, Combust. Flame, 123(3), 308 (2000)
- ISO 5660-2, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 2: Smoke Production Rate Heat (Dynamic Measurement), Genever (2002).
- Mourituz AP, Mathys Z, Gibson AG, Compos. Pt. A-Appl. Sci. Manuf., 38(7), 1040 (2005)
- Hirscher MM, Polymer, 25, 405 (1984)
- Zhang J, Jiang DD, Wilkie CA, Polym. Degrad. Stabil., 91(2), 298 (2006)
- Chung YJ, Lim HM, Jin E, Oh JK, Appl. Chem. Eng., 22(4), 439 (2011)
- Ishihara S, Wood Resh. Tech. Notes, 16(5), 49 (1981)