Applied Chemistry for Engineering, Vol.27, No.1, 80-85, February, 2016
다양한 아미노실란을 이용한 이산화탄소 흡착제 합성 및 흡착 특성
Synthesis of CO2 Adsorbent with Various Aminosilanes and its CO2 Adsorption Behavior
E-mail:
초록
넓은 비표면적과 큰 기공 부피를 갖는 실리카에 다양한 아미노실란 화합물을 in-situ 중합법을 통해 기능화 후 이산화탄소 흡착 특성을 확인하였다. 이산화탄소 흡착 기능기로 아민기가 포함된 아미노실란 화합물이 사용되었다. 흡착제의 흡착 특성 분석을 위해 질소 흡.탈착 실험과 원소분석, in situ FT-IR, TGA를 이용하였다. 흡착제 합성 전후를 비교하였을 때 폴리아미노실란이 기능화되면 표면적과 기공부피 및 크기가 감소하였으며 실리카 기공 부피의 70%에 해당하는 폴리아미노실란 화합물을 기능화 시켰을 경우 기공 부피의 100% 기능화 보다 이산화탄소 흡착능이 향상되었다. 흡착 온도를 비교하며 30 ℃보다 75 ℃에서 폴리아미노실란 화합물의 열팽창과 자유부피 증가로 흡착능이 증가하였고, 2NS/NPS-2의 경우 기공 부피 70% 기능화와 흡착 온도 75 ℃에서 9.2 wt%의 높은 CO2 흡착능을 보였다.
The carbon dioxide adsorption behavior of silica with a large specific surface area and pore volume functionalized with aminosilane compounds via in-situ polymrization and functionalization method were investigated. The organosilanes include amino functional group capable of adsorbing carbon dioxide. Elemental analyzer, in situ FT-IR and thermogravimetric analyzer were used to characterize the sorbents and to determine their CO2 adsorption behavior. Comparison of different aminosilane loading in the support revealed that polyaminosilane functionalization of 70% of the pore volume in the support was better in terms of the adsorption capacity and amine efficiency than that of 100% of the pore volume of the support. Furthermore, the sorbents showed a higher adsorption capacity at an adsorption temperature of 75 ℃ than at 30 ℃ due to the thermal expansion of synthesized polyaminosilanes inside the pore of silica. The N-[3-(trimethoxysilyl)propyl]ethylenediamine (2NS) sorbent with 70% of the pore volume functionalized showed the highest adsorption capacity of 9.2 wt% at 75 ℃.
- Yi CK, Korean Chem. Eng. Res., 48(2), 140 (2010)
- Min BM, Korean Ind. Chem. News, 12(1), 15 (2009)
- Yi CK, Korean Ind. Chem. News, 12(1), 30 (2009)
- Fauth DJ, Gray ML, Pennline HW, Krutka HM, Sjostrom S, Ault AM, Energy Fuels, 26(4), 2483 (2012)
- Oi G, Fu L, Choi BH, Giannelis EP, Energy Environ. Sci., 5, 7368 (2012)
- Figueroa J, Fout T, Plasynski S, Mcllvried H, Srivastava RD, Int. J. Greenhouse Gas Con., 2, 9 (2008)
- Broda M, Manovic V, Anthony EJ, Muller CR, Environ. Sci. Technol., 48, 5322 (2014)
- Kondakindi RR, McCumber G, Aleksic S, Whittenberger W, Abraham MA, Int. J. Greenhouse Gas Con., 15, 69 (2013)
- Meis NN, Frey AM, Bitter JH, de Jong KP, Ind. Eng. Chem. Res., 52, 12812 (2013)
- Quinn R, Kitzhoffer RJ, Hufton JR, Golden TC, Ind. Eng. Chem. Res., 51(27), 9320 (2012)
- Fernandez EO, Ronning M, Grande T, Chen D, Chem. Mater., 18, 6037 (2006)
- Na BK, Koo KK, Eum HM, Lee H, Song HK, Korean J. Chem. Eng., 18(2), 220 (2001)
- Saleh M, Tiwari JN, Kemp KC, Yousuf M, Kim KS, Environ. Sci. Technol., 47, 5467 (2013)
- Linneen NN, Pfeffer R, Lin YS, Chem. Eng. J., 254, 190 (2014)
- Lopez-Aranguren P, Fraile J, Vega LF, Domingo C, J. Supercrit. Fluids, 85, 68 (2014)
- Krasnoslobodtsev AV, Smirnov SN, Langmuir, 18(8), 3181 (2002)
- Liu FQ, Wang L, Huang ZG, Li CQ, Li W, Li RX, Li WH, Appl. Mater. Interfaces, 6, 4371 (2014)
- Zeng WT, Bai HL, Chem. Eng. J., 251, 1 (2014)
- Sanz R, Calleja G, Arencibia A, Sanz-Perez ES, Energy Fuels, 27(12), 7637 (2013)
- Sanz R, Galleja G, Arencibia A, Sanz-perez ES, J. Mater. Chem. A, 1, 1956 (2013)
- Park JH, Celedonio JM, Seo HM, Park YK, Ko YS, Catal. Today, http://dx.doi.org/10.1016/j.cattod.2015.10.015 (2015)
- Mueller R, Kammler HK, Wegner K, Pratsinis SE, Langmuir, 19(1), 160 (2003)
- Ek S, Root A, Peussa M, Niinisto L, Thermochim. Acta, 379(1-2), 201 (2001)
- Wilfong WC, Chuang SSC, Ind. Eng. Chem. Res., 53(11), 4224 (2014)
- Coates J, Interpretation of Infrared Spectra, A Practical Approach, 7-12, Wiley J, Chichester SL, Newtown, USA (2000).
- Tumuluri U, Isenberg M, Tan CS, Chuang SSC, Langmuir, 30(25), 7405 (2014)