화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.1, 80-85, February, 2016
다양한 아미노실란을 이용한 이산화탄소 흡착제 합성 및 흡착 특성
Synthesis of CO2 Adsorbent with Various Aminosilanes and its CO2 Adsorption Behavior
E-mail:
초록
넓은 비표면적과 큰 기공 부피를 갖는 실리카에 다양한 아미노실란 화합물을 in-situ 중합법을 통해 기능화 후 이산화탄소 흡착 특성을 확인하였다. 이산화탄소 흡착 기능기로 아민기가 포함된 아미노실란 화합물이 사용되었다. 흡착제의 흡착 특성 분석을 위해 질소 흡.탈착 실험과 원소분석, in situ FT-IR, TGA를 이용하였다. 흡착제 합성 전후를 비교하였을 때 폴리아미노실란이 기능화되면 표면적과 기공부피 및 크기가 감소하였으며 실리카 기공 부피의 70%에 해당하는 폴리아미노실란 화합물을 기능화 시켰을 경우 기공 부피의 100% 기능화 보다 이산화탄소 흡착능이 향상되었다. 흡착 온도를 비교하며 30 ℃보다 75 ℃에서 폴리아미노실란 화합물의 열팽창과 자유부피 증가로 흡착능이 증가하였고, 2NS/NPS-2의 경우 기공 부피 70% 기능화와 흡착 온도 75 ℃에서 9.2 wt%의 높은 CO2 흡착능을 보였다.
The carbon dioxide adsorption behavior of silica with a large specific surface area and pore volume functionalized with aminosilane compounds via in-situ polymrization and functionalization method were investigated. The organosilanes include amino functional group capable of adsorbing carbon dioxide. Elemental analyzer, in situ FT-IR and thermogravimetric analyzer were used to characterize the sorbents and to determine their CO2 adsorption behavior. Comparison of different aminosilane loading in the support revealed that polyaminosilane functionalization of 70% of the pore volume in the support was better in terms of the adsorption capacity and amine efficiency than that of 100% of the pore volume of the support. Furthermore, the sorbents showed a higher adsorption capacity at an adsorption temperature of 75 ℃ than at 30 ℃ due to the thermal expansion of synthesized polyaminosilanes inside the pore of silica. The N-[3-(trimethoxysilyl)propyl]ethylenediamine (2NS) sorbent with 70% of the pore volume functionalized showed the highest adsorption capacity of 9.2 wt% at 75 ℃.
  1. Yi CK, Korean Chem. Eng. Res., 48(2), 140 (2010)
  2. Min BM, Korean Ind. Chem. News, 12(1), 15 (2009)
  3. Yi CK, Korean Ind. Chem. News, 12(1), 30 (2009)
  4. Fauth DJ, Gray ML, Pennline HW, Krutka HM, Sjostrom S, Ault AM, Energy Fuels, 26(4), 2483 (2012)
  5. Oi G, Fu L, Choi BH, Giannelis EP, Energy Environ. Sci., 5, 7368 (2012)
  6. Figueroa J, Fout T, Plasynski S, Mcllvried H, Srivastava RD, Int. J. Greenhouse Gas Con., 2, 9 (2008)
  7. Broda M, Manovic V, Anthony EJ, Muller CR, Environ. Sci. Technol., 48, 5322 (2014)
  8. Kondakindi RR, McCumber G, Aleksic S, Whittenberger W, Abraham MA, Int. J. Greenhouse Gas Con., 15, 69 (2013)
  9. Meis NN, Frey AM, Bitter JH, de Jong KP, Ind. Eng. Chem. Res., 52, 12812 (2013)
  10. Quinn R, Kitzhoffer RJ, Hufton JR, Golden TC, Ind. Eng. Chem. Res., 51(27), 9320 (2012)
  11. Fernandez EO, Ronning M, Grande T, Chen D, Chem. Mater., 18, 6037 (2006)
  12. Na BK, Koo KK, Eum HM, Lee H, Song HK, Korean J. Chem. Eng., 18(2), 220 (2001)
  13. Saleh M, Tiwari JN, Kemp KC, Yousuf M, Kim KS, Environ. Sci. Technol., 47, 5467 (2013)
  14. Linneen NN, Pfeffer R, Lin YS, Chem. Eng. J., 254, 190 (2014)
  15. Lopez-Aranguren P, Fraile J, Vega LF, Domingo C, J. Supercrit. Fluids, 85, 68 (2014)
  16. Krasnoslobodtsev AV, Smirnov SN, Langmuir, 18(8), 3181 (2002)
  17. Liu FQ, Wang L, Huang ZG, Li CQ, Li W, Li RX, Li WH, Appl. Mater. Interfaces, 6, 4371 (2014)
  18. Zeng WT, Bai HL, Chem. Eng. J., 251, 1 (2014)
  19. Sanz R, Calleja G, Arencibia A, Sanz-Perez ES, Energy Fuels, 27(12), 7637 (2013)
  20. Sanz R, Galleja G, Arencibia A, Sanz-perez ES, J. Mater. Chem. A, 1, 1956 (2013)
  21. Park JH, Celedonio JM, Seo HM, Park YK, Ko YS, Catal. Today, http://dx.doi.org/10.1016/j.cattod.2015.10.015 (2015)
  22. Mueller R, Kammler HK, Wegner K, Pratsinis SE, Langmuir, 19(1), 160 (2003)
  23. Ek S, Root A, Peussa M, Niinisto L, Thermochim. Acta, 379(1-2), 201 (2001)
  24. Wilfong WC, Chuang SSC, Ind. Eng. Chem. Res., 53(11), 4224 (2014)
  25. Coates J, Interpretation of Infrared Spectra, A Practical Approach, 7-12, Wiley J, Chichester SL, Newtown, USA (2000).
  26. Tumuluri U, Isenberg M, Tan CS, Chuang SSC, Langmuir, 30(25), 7405 (2014)