화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.3, 1008-1013, March, 2016
Regeneration mechanism of CeO2-TiO2 sorbents for elemental mercury capture from syngas
E-mail:
The characteristics of mercury desorption on spent CeO2-TiO2 (CeTi) sorbents were investigated to improve the cyclic regeneration removal activity. Mercury was significantly released in the form of elemental mercury at temperatures ranging from 250 to 280 oC. Mercury desorption had a significant correlation with regeneration temperature, but was independent of the heating rate and regeneration conditions. The optimal regeneration temperature was 500 oC. The CeTi sorbents could be easily restored by simple heating and exhibited superior activity over several capture-regeneration cycles. The amount of released mercury almost equaled the adsorbed mercury on the surface of the CeTi sorbent, indicating that most of the adsorbed mercury was released during the heating process.
  1. Li HL, Wu CY, Li Y, Zhang JY, Environ. Sci. Technol., 45, 7394 (2011)
  2. Wang SX, Zhang L, Zhao B, Meng Y, Hao JM, Energy Fuels, 26(8), 4635 (2012)
  3. Sun MY, Hou JA, Cheng GH, Baig SA, Tan LS, Xu XH, Fuel, 125, 66 (2014)
  4. Reddy KSK, Shoaibi AA, Srinivasakannan C, J. Ind. Eng. Chem., 20(5), 2969 (2014)
  5. Zhou JS, Hou WH, Qi P, Gao X, Luo ZY, Cen KF, Environ. Sci. Pollut. Res., 47, 10056 (2013)
  6. Hou WH, Zhou JS, Qi P, Gao X, Luo ZY, Chem. Eng. J., 241, 131 (2014)
  7. Liu Y, Kelly D, Yang HQ, Lin C, Kuznicki SM, Xu ZG, Environ. Sci. Technol., 42, 6205 (2008)
  8. Rodriguez-Perez J, Lopez-Anton MA, Diaz-Somoano M, Garcia R, Martinez-Tarazona MR, J. Hazard. Mater., 260, 869 (2013)
  9. Dong J, Xu ZH, Kuznicki SM, Environ. Sci. Technol., 43, 3266 (2009)
  10. Ozaki M, Uddin MA, Sasaoka E, Wu SJ, Fuel, 87(17-18), 3610 (2008)
  11. Fan XP, Li CT, Zeng GM, Zhang X, Tao SS, Lu P, Tan Y, Luo DQ, Energy Fuels, 26(4), 2082 (2012)
  12. Tan ZQ, Xiang J, Su S, Zeng HC, Zhou CS, Sun LS, Hu S, Qiu JR, J. Hazard. Mater., 239, 160 (2012)
  13. Scala F, Anacleria C, Cimino S, Fuel, 108, 13 (2013)
  14. Li HL, Wu CY, Li Y, Li LQ, Zhao YC, Zhang JY, Chem. Eng. J., 219, 319 (2013)
  15. Li P, Xin Y, Li Q, Wang ZP, Zhang ZL, Zheng LR, Environ. Sci. Technol., 46, 9600 (2012)
  16. Liu CX, Chen L, Li JH, Ma L, Arandiyan H, Du Y, Xu JY, Hao JM, Environ. Sci. Technol., 46, 6182 (2012)
  17. Xie JK, Qu Z, Yan NQ, Yang SJ, Chen WM, Hu LG, Huang WJ, Liu P, J. Hazard. Mater., 261, 206 (2013)
  18. Chen LA, Li JH, Ge MF, Zhu RH, Catal. Today, 153(3-4), 77 (2010)
  19. Xu WQ, He H, Yu YB, J. Phys. Chem. C, 113, 4426 (2009)
  20. Zhang XN, Li CT, Zhao LK, Zhang J, Zeng GM, Xie YE, Yu ME, Appl. Surf. Sci., 343, 392 (2015)
  21. Zhao LF, Li CT, Zhang J, Zhang XN, Zhan FM, Ma JF, Xie YE, Zeng GM, Fuel, 153, 361 (2015)
  22. Wang PY, Su S, Xiang J, You HW, Cao F, Sun LS, Hu S, Zhang Y, Chemosphere, 101, 49 (2014)
  23. Xu WQ, Wang HR, Zhou X, Zhu TY, Chem. Eng. J., 243, 380 (2014)
  24. Zhou X, Xu WQ, Wang HR, Tong L, Qi H, Zhu TY, Chem. Eng. J., 254, 82 (2014)
  25. Zhao B, Liu XW, Zhou ZJ, Shao HZ, Wang C, Si JP, Xu MH, Chem. Eng. J., 253, 508 (2014)