화학공학소재연구정보센터
Applied Energy, Vol.162, 450-459, 2016
Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection
We present the design and optical analyses of an arrayed microfluidic tunable prism panel that enables wide solar tracking and high solar concentration while minimizing energy loss. Each of the liquid prism modules is implemented by a microfluidic (i.e. non-mechanical) technology based on electrowetting for adaptive solar beam steering. Therefore the proposed platform offers a low-cost, lightweight and precise solar tracking system while obviating the need for bulky and heavy mechanical moving parts essentially required for a conventional motor-driven solar tracker. In this paper, various liquid prism configurations in terms of design (single, double, triple and quad-stacked prism arrays) as well as optical materials are considered and their impact on optical performance aspects such as solar beam steering, reflection losses and beam concentration is studied. Our system is able to achieve a wide solar tracking covering the whole-day movement of the Sun and a reflection loss below 4.4% with a Rayleigh's film for a quad-stacked prism configuration. Furthermore, an arrayed prism panel is proposed to increase the aperture area and thus allows for the collection of large amounts of sunlight. Our simulation study based on the optical design software, ZEMAX, indicates that the prism panel is capable of high solar concentration up to 2032x factor even without conventional solar tracking devices. We also deal with dispersion characteristics of the materials and their corresponding effect on concentration factor. The proposed microfluidic platform has a potential for high solar energy harvesting and is not only economically viable, but also reliable and practical for various solar power applications. (C) 2015 Elsevier Ltd. All rights reserved.