Applied Microbiology and Biotechnology, Vol.99, No.19, 8137-8149, 2015
A multiplex oligonucleotide ligation-PCR as a complementary tool for subtyping of Salmonella Typhimurium
Subtyping below the serovar level is essential for surveillance and outbreak detection and investigation of Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) and its monophasic variant 1,4,[5],12:i:- (S. 1,4,[5],12:i:-), frequent causes of foodborne infections. In an attempt to overcome the intrinsic shortcomings of currently used subtyping techniques, a multiplex oligonucleotide ligation-PCR (MOL-PCR) assay was developed which combines different types of molecular markers in a high-throughput microsphere suspension array. The 52 molecular markers include prophage genes, amplified fragment length polymorphism (AFLP) elements, Salmonella genomic island 1 (SGI1), allantoinase gene allB, MLVA locus STTR10, antibiotic resistance genes, single nucleotide polymorphisms (SNPs) and phase 2 flagellar gene fljB. The in vitro stability of these markers was confirmed in a serial passage experiment. The validation of the MOL-PCR assay for subtyping of S. Typhimurium and S. 1,4,[5],12:i:- on 519 isolates shows that the method is rapid, reproducible, flexible, accessible, easy to use and relatively inexpensive. Additionally, a 100 % typeability and a discriminatory power equivalent to that of phage typing were observed, and epidemiological concordance was assessed on isolates of 2 different outbreaks. Furthermore, a data analysis method is provided so that the MOL-PCR assay allows for objective, computerised data analysis and data interpretation of which the results can be easily exchanged between different laboratories in an international surveillance network.