Applied Microbiology and Biotechnology, Vol.100, No.2, 1019-1026, 2016
Biogas process parameters-energetics and kinetics of secondary fermentations in methanogenic biomass degradation
Pool sizes of short-chain fatty acids (formate, acetate, propionate, and butyrate), hydrogen, and carbon monoxide were assayed in digesting sludge from four different methanogenic reactors degrading either sewage sludge or agricultural products and wastes at pH 8.0 and 40 or 47 A degrees C. Free reaction energies were calculated for the respective degradation reactions involved, indicating that acetate, propionate, and butyrate degradation all supplied sufficient energy (-10 to -30 kJ per mol reaction) to sustain the microbial communities involved in the respective processes. Pools of formate and hydrogen were energetically equivalent as electron carriers. In the sewage sludge reactor, homoacetogenic acetate formation from H-2 and CO2 was energetically feasible whereas syntrophic acetate oxidation appeared to be possible in two biogas reactors, one operating at enhanced ammonia content (4.5 g NH4 (+)-N per l) and the other one at enhanced temperature (47 A degrees C). Maximum capacities for production of methanogenic substrates did not exceed the consumption capacities by hydrogenotrophic and aceticlastic methanogens. Nonetheless, the capacity for acetate degradation appeared to be a limiting factor especially in the reactor operating at enhanced ammonia concentration.