화학공학소재연구정보센터
Applied Surface Science, Vol.332, 253-259, 2015
Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering
In this study, six groups of polypropylene composites reinforced with wood flour (WF), cellulose, and lignin at different loading levels were exposed in a QUV accelerated weathering tester for a total duration of 960 h. The changes in surface morphology, chemistry, and thermal properties of weathered samples were characterized by atomic force microscope (AFM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetric (DSC), respectively. The flexural properties of all samples were tested after different durations of weathering. The results showed that: (1) the surface roughness of all samples increased after weathering; (2) composites containing lignin showed less loss of flexural strength and modulus and less roughness on weathered surface compared with lignin-free composites, indicating the functions of stabilization and antioxidation of lignin; (3) the crystallinity of PP increased in all weathered samples due to chain scissions and recrystallization; (4) ATR-FTIR and XPS analyses demonstrated in detail that significant changes occurred in surface chemistry, accompanied by the photodegradation and photo-oxidation of lignin and cellulose with prolonged weathering time. (C) 2015 Elsevier B.V. All rights reserved.