Applied Surface Science, Vol.342, 112-119, 2015
ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light
We present an innovative approach for synthesis of zinc oxide-graphene (ZnO-G) hybrid nanostructures through combination of improved hummer and arc discharge methods in liquid. A detailed study of the considerable visible-light photocatalytic activities of these nanostructures for the degradation of Phenol red (PR) and Methyl orange (MO) as standard organic compounds under the irradiation of 90 W halogen light for 2 h has been performed. The ZnO-G nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer Emmett Teller (BET) and ultra violet-visible absorption spectroscopy (UV-vis). The results revealed that the ZnO-G nanostructures extended the light absorption spectrum toward the visible region and remarkably enhanced the photodegradation of standard dyes under visible-light irradiation. It has been confirmed that the ZnO-G nanostructures could be excited by visible-light (E similar to 2.6 eV). The major enhancement in the photocatalytic activity of ZnO-G nanostructures under visible-light irradiation can be attributed to the effect of electron transport among ZnO nanoparticles (NPs) and graphene sheets. A mechanism for photocatalytic degradation of organic pollutants over ZnO-G photocatalyst was proposed based on our observations. (C) 2015 Elsevier B.V. All rights reserved.
Keywords:ZnO-G hybrid nanostructures;Arc discharge;Improved hummer method;Visible-light photocatalytic performance