화학공학소재연구정보센터
Applied Surface Science, Vol.347, 591-595, 2015
Preparation, corrosion resistance and hemocompatibility of the superhydrophobic TiO2 coatings on biomedical Ti-6Al-4V alloys
In this paper the micro-arc oxidation (MAO) technique and subsequent superhydrophobic treatment were applied to fabricate the superhydrophobic TiO2 coatings on biomedical Ti-6Al-4V alloys. The surface morphology, surface roughness, water contact angle, corrosion resistance and hemocompatibility of the MAO and superhydrophobic samples were investigated. The results showed that the single anatase TiO2 coating was formed on the surface Ti-6Al-4V alloy with rough and porous micrometer-scale structure. The low surface energy film was grafted on the surface of the TiO2 coating by self-assembling reaction during the hydrophobic treatment process, which resulted in the formation of superhydrophobic surfaces with the water contact angle of 153.39. It was found that the corrosion resistance of the superhydrophobic samples increased by one order of magnitude compared to those of the uncoated Ti-6Al-4V alloys. The hemolysis ratio and platelets adhesion characteristics of the Ti-6Al-4V alloys were also improved greatly through the MAO treatment and subsequent superhydrophobic treatment. Especially, no platelet could be observed on the surface of the superhydrophobic samples. Therefore, the superhydrophobic TiO2 coatings of Ti-6Al-4V alloys with higher hemocompatibility would show great promise in their potential blood-contacting applications. (C) 2015 Elsevier B.V. All rights reserved.