Applied Surface Science, Vol.351, 401-409, 2015
Surface characteristics of ruthenium in periodate-based slurry during chemical mechanical polishing
When the feature size of integrated circuit continues to shrink below 14 nm, ruthenium (Ru) has become one of the most promising candidates for the application of novel barrier layer. To reveal the material removal mechanism of Ru during chemical mechanical polishing (CMP), surface characteristics of Ru in KIO4-based slurry were investigated. The corrosion behavior of ruthenium was measured by the surface chemistry and morphology analysis. Then the mechanical properties of the passivated/corroded surface were evaluated by AES and tribocorrosion experiments. CMP experiments were carried out to make clear the effects of surface property during polishing. It was found that the Ru surface chemistry and mechanical properties vary obviously as a function of slurry pH. In neutral slurries, the Ru surface is covered with RuO2 center dot 2H(2)O/RuO3 inhomogeneous passivation films, with the highest material removal rate obtained during the CMP process. It could be concluded that the material removal mechanism largely depends on the slurry pH values. In near neutral slurries, Ru is passivated with thick and heterogeneous oxides film, which proves the easiest to be mechanically removed during polishing. The weak alkaline slurry is preferred in order to achieve desirable polishing rate as well as avoid the formation of toxic RuO4. (C) 2015 Elsevier B.V. All rights reserved.