Applied Surface Science, Vol.357, 1080-1088, 2015
Efficient removal of fluoride by hierarchical MgO microspheres: Performance and mechanism study
Hierarchical MgO microspheres assembled by numerous porous nanoplates were successfully obtained by annealing the precursors of magnesium carbonate hydroxide hydrate synthesized through a facile and cost-effective hydrothermal process at low temperature. The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller measurements. The fluoride removal performance of the hierarchical MgO microspheres was investigated. The adsorption isotherm could be well fitted in Freundlich model, and the adsorption capacity was over 115.5 mg/g at pH 7. The absorbent also showed high fluoride removal ability in a wide pH range of 2-10, which is favorable for practical application. The effect of co-existing anions on fluoride removal was also investigated. The result indicated that the fluoride adsorption capacity was influenced when carbonate, bicarbonate and phosphate existed above the concentration of 50 mg/g. In addition, the adsorption mechanism was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A novel hydroxyl and carbonate co-exchange mechanism has been proposed for the first time. It can be found that fluoride ions could replace the surface carbonates which formed by the reaction of MgO and the adsorbed CO2 molecules, and then anchored on the MgO surface. (C) 2015 Elsevier B.V. All rights reserved.
Keywords:Hierarchical MgO microspheres;Fluoride removal;Adsorption;Hydroxyl and carbonate co-exchange