화학공학소재연구정보센터
Biotechnology Progress, Vol.31, No.2, 493-502, 2015
Factors that Determine Stability of Highly Concentrated Chemically Defined Production Media
High cell density perfusion processes for the production of therapeutic antibodies require large volumes of media to meet cellular stoichiometric and energy demands. The use of media concentrates provides a way to reduce the cost of manufacturing. Reducing the number and size of liquid media batches reduces the media footprint in the manufacturing plant and cuts costs associated with single-use systems for preparation and storage of liquid media. Concentrates that can be stored at room temperature also reduce costs by eliminating the need for refrigerated storage. To meet these economic and operational objectives, we developed a complete concentrated medium system consisting of a 5X medium concentrate that can be used in conjunction with a concentrated supplement of cystine, tyrosine, and folic acid. The effects of pyruvate, bicarbonate, and glutamine on the stability of the 5X concentrates were studied. Pyruvate and bicarbonate were found to have profound impacts on media stability, including media coloration, precipitate formation and ability to support cell culture. Bicarbonate was found to have detrimental effects in 5X concentrated media, resulting in precipitation of pyruvate-free media and accelerated glutamine degradation. Pyruvate prevented precipitation in bicarbonate-containing concentrates. Moreover, the presence of pyruvate in bicarbonate-free, glutamine-free 5X concentrates resulted in the substantial preservation of the functional activity of the medium for 1 month at room temperature. (c) 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:493-502, 2015