Chemical Engineering Journal, Vol.279, 488-497, 2015
Enhancement of stability and photoactivity of TiO2 coatings on annular glass reactors to remove emerging pollutants from waters
TiO2 coatings of highly photoactive lab-made titania were prepared on the outer wall of the inner tube of a glass tubular reactor by dip-coating method. The effect of decreasing the size of the aggregates to improve adhesion and photoactivity of the coatings to degrade phenol, diclofenac and isoproturon was also investigated. Chemical disaggregation of the TiO2 particles resulted in a lower aggregate size, between 0.1 and 1 mu m, than mechanical disaggregation, between 1 and 10 mu m. The results of the adhesion tape test showed that either milling of aggregate material with a planetary mill or chemical stabilization of the particles were necessary to obtain TiO2 coatings on glass tube with acceptable quality to be used in water treatment applications. SEM images showed that coatings prepared after milling the TiO2 suspension were more homogeneous without surface aggregates. The degree of adhesion of the coatings after increasing the roughness of the support by abrasive blasting was also evaluated. Adhesion to the substrate was slightly lower when using the modified support. The photoactivity results showed that the coatings prepared after wet milling of catalyst during 30 min and after chemical disaggregation were more efficient in terms of degradation and mineralization when using phenol as model molecule. Subsequent studies with two emerging pollutants, diclofenac and isoproturon, also showed enhanced efficiency of these coatings. The reusability of the TiO2 coatings was also evaluated and a promising photocatalytic performance was observed with a very low variation of the decay rate after five consecutive usages. (C) 2015 Elsevier B.V. All rights reserved.
Keywords:Immobilized TiO2;Annular reactor;Emerging pollutants;Adhesion strength;Planetary mills;Sand blasting