화학공학소재연구정보센터
Chemical Engineering Journal, Vol.270, 22-27, 2015
Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal-organic framework
For the first time, the adsorptive removal of methylchlorophenoxypropionic acid (MCPP) from water, using a metal-organic framework (MOF), namely Zr-benzenedicarboxylate (UiO-66), was investigated to determine the applicability of MOFs in the removal of hazardous herbicides/pesticides from contaminated water. Compared with activated carbon, UiO-66 has a very high adsorption rate (kinetic constant 30 times that of activated carbon). This rapid adsorption is remarkable because the pore size of UiO-66 is smaller than that of activated carbon. Moreover, the adsorption capacity of UiO-66 is higher than that of activated carbon especially at low MCPP concentrations (similar to 7.5 times at 1 ppm of MCPP). These rapid and high uptakes by UiO-66 suggest that there is a special mechanism for interactions between MCPP and UiO-66. Additionally, the adsorbent can be reused for adsorptive removal by washing the spent adsorbent with a simple solvent. MOFs such as UiO-66 are therefore potential adsorbents for use in the adsorptive removal of MCPP from contaminated water. A plausible adsorption mechanism is suggested based on the effects of pH on the zeta potential of the adsorbent and on adsorption. For the adsorption of MCPP by UiO-66, electrostatic and pi-pi interactions might both be important. (C) 2015 Elsevier B.V. All rights reserved.