Chemical Physics Letters, Vol.629, 58-64, 2015
Modeling of hydroxyapatite-peptide interaction based on fragment molecular orbital method
We have applied the four-body corrected fragment molecular orbital (FMO4) calculations to analyze the interaction between a designed peptide motif (Glu1-Ser2-Gln3-Glu4-Ser5) and the hydroxyapatite (HA) solid mimicked by a cluster model consisting of 1408 atoms. To incorporate statistical fluctuations, a total of 30 configurations were generated through classical molecular dynamics simulation with water molecules and were subjected to FMO4 calculations at the MP2 level. It was found that Ser5 plays a leading role in interacting with the phosphate moieties of HA via charge transfer and also that negatively charged Glu1 and Glu4 provide electrostatic stabilizations with the calcium ions. (C) 2015 Elsevier B.V. All rights reserved.