화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.2, 265-274, March, 2016
산화구리와 탄소나노튜브가 실리콘 고무 나노복합재료의 열적 안정성에 미치는 영향
Effects of Copper Oxide and Carbon Nanotubes on Thermal Stability of Silicone Rubber Nanocomposites
E-mail:
Silicone rubber (SR) filled with carbon nanotubes (CNTs), copper oxide (CuO) and CuO modified CNTs (CuO-CNTs) were prepared to detect the effects of these additives on thermal stability of SR by thermogravimetric analysis and tensile testing before and after aging. Flynn-Wall-Ozawa method was also employed to analyze the thermal degradation kinetics. The results indicated that all the additives could increase the initial thermal degradation temperature and thermal oxidative aging properties of SR and a synergistic effect was found in CuO-CNTs/SR. Meanwhile, activation energies of SR filled with additives increased significantly relative to neat SR and found to be optimal for CuO-CNTs/SR with activation energy increasing to 231.29, 121.68 kJ·mol-1 larger than that of blank sample. It is because that CNTs and CuO could promote each other to capture the free radicals generated by thermal oxidative reaction of the methyl side groups and thereby terminate the process.
  1. Pradhan B, Srivastava SK, Polym. Int., 63, 1219 (2014)
  2. Yeom HY, Na HY, Lee SJ, Polym. Korea, 38(6), 767 (2014)
  3. Munoz J, Baeza M, Microchem J., 122, 189 (2015)
  4. Ha JU, Hong J, Kim M, Choi JK, Park DW, Shim SE, Polym. Korea, 37(6), 722 (2013)
  5. Sagar S, Iqbal N, Maqsood A, Shahid M, Shah NA, Jamil T, Bassyouni MI, J. Compos. Mater., 49, 995 (2015)
  6. Mansour NA, Mohamed MG, Mazrouaa AM, Abed MY, High Perform. Polym., 24, 625 (2012)
  7. Wang X, Xing WY, Feng XM, Yu B, Lu HD, Song L, Hu Y, Chem. Eng. J., 250, 214 (2014)
  8. Ong HT, Julkapli NM, Tai MF, Hamid SB, J. Magn. Magn. Mater., 395, 173 (2015)
  9. Chuai MY, Zhao Q, Zhang MZ, Mater. Lett., 161, 205 (2015)
  10. Moosavifard SE, Shamsi J, Kadkhodazade S, Fani S, Ceram. Int., 40, 15973 (2014)
  11. Wang YQ, Jiang TT, Meng DW, Yang J, Li YC, Ma Q, Han J, Appl. Surf. Sci., 317, 414 (2014)
  12. Wang BB, Gu LX, Mater. Lett., 57, 361 (2002)
  13. Yang LF, Chu DQ, Wang LM, Mater. Lett., 160, 246 (2015)
  14. Jiang R, Zhu HY, Guan YJ, Fu YQ, Xiao L, Yuan QQ, Jiang ST, Chem. Eng. Technol., 34(2), 179 (2011)
  15. Zhao FQ, Pei JF, Hu RZ, Song XD, Ren XN, Gao HX, An T, J. Anal. Appl. Pyrolysis, 112, 88 (2015)
  16. Iijima S, Nature, 354, 56 (1991)
  17. Baughman RH, Zakhidov AA, de Heer WA, Science, 297, 787 (2002)
  18. Katihabwa A, Wang WC, Jiang Y, Zhao XY, Lu YL, Zhang LQ, J. Reinf. Plast. Compos., 30, 1007 (2011)
  19. Shang SM, Gan L, Yuen MC, Compos. Sci. Technol., 86, 129 (2013)
  20. Kim DW, Rhee KY, Park SJ, J. Alloy. Compd., 530, 6 (2012)
  21. Zhang XJ, Shi WH, Zhu JX, Kharistal DJ, Zhao WY, Lalia BS, Hng HH, Yan QY, ACS Nano, 5, 2013 (2011)
  22. Zhang WD, Xu B, Jiang LC, J. Mater. Chem., 20, 6383 (2012)
  23. Corrias M, Dechambre G, Lacout JL, Carbon, 41, 2361 (2003)
  24. Song SQ, Yang HX, Rao RC, Liu HD, Zhang AM, Catal. Commun., 11, 783 (2010)
  25. Rodriguez-Manzo JA, Cretu O, Banhart F, ACS Nano, 4, 3422 (2012)
  26. Hamdani S, Longuet C, Ganachaud F, Perrin D, Ganachaud F, Polym. Degrad. Stabil., 94, 465 (2009)
  27. Camino G, Lomakin SM, Lazzari M, Polymer, 42(6), 2395 (2001)
  28. Watts PCP, Fearon PK, Hsu WK, J. Mater. Chem., 13, 491 (2003)
  29. Tan SL, Ma LX, Tang XD, Sun XG, High Perform. Polym., 27, 65 (2015)
  30. Li B, Zhang ZD, Ma DP, Zhai QQ, Zhang J, Feng SY, J. Appl. Polym. Sci., 132, 41 (2015)