Polymer(Korea), Vol.40, No.2, 328-335, March, 2016
N-아세틸화 글리콜 키토산의 합성과 온도감응성 졸-젤 전이 특성
Synthesis of N-Acetylated Glycol Chitosans and Their Thermo-sensitive Sol-Gel Transition Properties
E-mail:
초록
본 연구에서는 수용성 천연고분자인 글리콜 키토산의 N-아세틸화를 통해 새로운 천연고분자 기반의 온도감응성 고분자를 합성하고, 온도감응성을 평가하였다. 글리콜 키토산의 N-아세틸화 반응을 통해 글리콜 키틴 구조의 고분자를 성공적으로 합성하였고, 수용액 상에서 37 ℃ 주변에서 온도감응성 졸-젤 전이현상이 효과적으로 일어남을 확인하였다. 이러한 졸-젤 전이 특성은 기존의 합성고분자 기반 온도감응성 고분자에 비해 상대적으로 더 낮은 농도(3~16 wt%)에서 보였고, 고분자의 분자량, 아세틸화도, 농도를 변화시킴으로써 효과적으로 조절될 수 있었다. 글리콜 키틴은 우수한 온도감응성 뿐 아니라 낮은 세포독성과 향상된 젤 안정성을 보임으로써, 약물전달, 조직공학, 3차원 세포배양 등 다양한 생체의료용 응용분야에 유용하게 활용될 수 있을 것으로 전망된다.
In this study, new polysaccharide-based thermo-sensitive polymers were synthesized and their thermo-sensitive sol-gel transition properties were evaluated. Glycol chitin structures were successfully introduced by N-acetylation reaction of glycol chitosan. The aqueous solutions of glycol chitins demonstrated unique thermo-sensitive sol-gel transition behaviors around 37 ℃. Their sol-gel transition properties were observed at a relatively lower concentration range (3~16 wt%) compared to those of typical synthetic polymer based systems and efficiently modulated by varying molecular weight, DA, and concentration. Based on their thermo-sensitivity, low cyto-toxicity, and high gel stability, the glycol chitin polymers could be utilized for various biomedical applications, such as drug delivery, tissue engineering, and 3D cell culture.
- Moon HJ, Ko DY, Park MH, Joo MK, Jeong B, Chem. Soc. Rev., 41, 4860 (2012)
- Gandhi A, Paul A, Sen SO, Sen KK, Asian J. Pharm. Sci., 10, 99 (2015)
- Bhattarai N, Gunn J, Zhang M, Adv. Drug Deliv. Rev., 62, 83 (2010)
- Heskins M, Guillet JE, J. Macromol. Sci.-Chem., 2, 1441 (1968)
- Zhang XZ, Yang YY, Wang FJ, Chung TS, Langmuir, 18(6), 2013 (2002)
- Gil ES, Hudson SM, Prog. Polym. Sci, 29, 1173 (2004)
- Huh HW, Zhao L, Kim SY, Carbohydr. Polym., 126, 130 (2015)
- Radivojsa M, Grabnar I, Grabnar PA, Eur. J. Pharm. Sci., 50, 93 (2013)
- Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A, Biomaterials, 21, 2155 (2000)
- Klouda L, Mikos AG, Eur. J. Pharm. Biopharm., 68, 34 (2008)
- He C, Kim SW, Lee DS, J. Control. Release, 127, 189 (2008)
- Park YD, Tirelli N, Hubbell JA, Biomaterials, 24, 893 (2003)
- Chiu HC, Lin YF, Hsu YH, Biomaterials, 23, 1103 (2002)
- Li Z, Cho S, Kwon IC, Amsbury MMJ, Huh KM, Carbohydr. Polym., 92, 2267 (2013)
- Park JK, Nah JW, Choi C, Polym. Korea, 39(3), 480 (2015)
- Jeong YI, Kim DG, Jang MK, Nah JW, Carbohydr. Res., 343, 282 (2008)
- Cui L, Jia J, Guo Y, Liu Y, Zhu P, Carbohydr. Polym., 99, 31 (2014)
- Lejardi A, Hernandez R, Criado M, Santos JI, Etxeberria A, Sarasua JR, Mijangos C, Carbohydr. Polym., 103, 267 (2014)
- Suh JKF, Matthew HWT, Biomaterials, 21, 2589 (2000)
- Jang MK, Nah JW, J. Korean Ind. Eng. Chem., 19(5), 457 (2008)
- Nie W, Yuan X, Zhao J, Zhou Y, Bao H, Carbohydr. Polym., 96, 342 (2013)
- Lejardi A, Hernandez R, Criado M, Santos JI, Etxeberria A, Sarasua JR, Mijangos C, Carbohydr. Polym., 103, 267 (2014)
- Peng Y, Li J, Li J, Fei Y, Dong J, Pan W, Int. J. Pharm., 441, 482 (2013)
- Duhem N, Rolland J, Riva R, Guillet P, Schumers JM, Jerome C, Gohy JF, Preat V, Int. J. Pharm., 423, 452 (2012)
- Amin MCIM, Ahmad N, Halib N, Ahmad I, Carbohydr. Polym., 88, 465 (2012)
- Knight DK, Shapka SN, Amsden BG, J. Biomed. Mater. Res. Part A, 83, 787 (2007)
- Li Z, Kim YH, Min HS, Han CK, Huh KM, Macromol. Res., 18(6), 618 (2010)
- Jeong YI, Kim DG, Jang MK, Nah JW, Carbohydr. Polym., 343, 282 (2008)
- Park JC, Park BJ, Lee DH, Suh H, Kim DG, Kwon OH, Yonsei Med. J., 43, 518 (2002)
- Dumortier G, Grossiord JL, Agnely F, Chaumeil JC, Pharmaceut. Res., 23, 2709 (2006)
- Ur-Rehman T, Tavelin1 S, Grobner G, Int. J. Pharm., 474, 19 (2011)