화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.2, 328-335, March, 2016
N-아세틸화 글리콜 키토산의 합성과 온도감응성 졸-젤 전이 특성
Synthesis of N-Acetylated Glycol Chitosans and Their Thermo-sensitive Sol-Gel Transition Properties
E-mail:
초록
본 연구에서는 수용성 천연고분자인 글리콜 키토산의 N-아세틸화를 통해 새로운 천연고분자 기반의 온도감응성 고분자를 합성하고, 온도감응성을 평가하였다. 글리콜 키토산의 N-아세틸화 반응을 통해 글리콜 키틴 구조의 고분자를 성공적으로 합성하였고, 수용액 상에서 37 ℃ 주변에서 온도감응성 졸-젤 전이현상이 효과적으로 일어남을 확인하였다. 이러한 졸-젤 전이 특성은 기존의 합성고분자 기반 온도감응성 고분자에 비해 상대적으로 더 낮은 농도(3~16 wt%)에서 보였고, 고분자의 분자량, 아세틸화도, 농도를 변화시킴으로써 효과적으로 조절될 수 있었다. 글리콜 키틴은 우수한 온도감응성 뿐 아니라 낮은 세포독성과 향상된 젤 안정성을 보임으로써, 약물전달, 조직공학, 3차원 세포배양 등 다양한 생체의료용 응용분야에 유용하게 활용될 수 있을 것으로 전망된다.
In this study, new polysaccharide-based thermo-sensitive polymers were synthesized and their thermo-sensitive sol-gel transition properties were evaluated. Glycol chitin structures were successfully introduced by N-acetylation reaction of glycol chitosan. The aqueous solutions of glycol chitins demonstrated unique thermo-sensitive sol-gel transition behaviors around 37 ℃. Their sol-gel transition properties were observed at a relatively lower concentration range (3~16 wt%) compared to those of typical synthetic polymer based systems and efficiently modulated by varying molecular weight, DA, and concentration. Based on their thermo-sensitivity, low cyto-toxicity, and high gel stability, the glycol chitin polymers could be utilized for various biomedical applications, such as drug delivery, tissue engineering, and 3D cell culture.
  1. Moon HJ, Ko DY, Park MH, Joo MK, Jeong B, Chem. Soc. Rev., 41, 4860 (2012)
  2. Gandhi A, Paul A, Sen SO, Sen KK, Asian J. Pharm. Sci., 10, 99 (2015)
  3. Bhattarai N, Gunn J, Zhang M, Adv. Drug Deliv. Rev., 62, 83 (2010)
  4. Heskins M, Guillet JE, J. Macromol. Sci.-Chem., 2, 1441 (1968)
  5. Zhang XZ, Yang YY, Wang FJ, Chung TS, Langmuir, 18(6), 2013 (2002)
  6. Gil ES, Hudson SM, Prog. Polym. Sci, 29, 1173 (2004)
  7. Huh HW, Zhao L, Kim SY, Carbohydr. Polym., 126, 130 (2015)
  8. Radivojsa M, Grabnar I, Grabnar PA, Eur. J. Pharm. Sci., 50, 93 (2013)
  9. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A, Biomaterials, 21, 2155 (2000)
  10. Klouda L, Mikos AG, Eur. J. Pharm. Biopharm., 68, 34 (2008)
  11. He C, Kim SW, Lee DS, J. Control. Release, 127, 189 (2008)
  12. Park YD, Tirelli N, Hubbell JA, Biomaterials, 24, 893 (2003)
  13. Chiu HC, Lin YF, Hsu YH, Biomaterials, 23, 1103 (2002)
  14. Li Z, Cho S, Kwon IC, Amsbury MMJ, Huh KM, Carbohydr. Polym., 92, 2267 (2013)
  15. Park JK, Nah JW, Choi C, Polym. Korea, 39(3), 480 (2015)
  16. Jeong YI, Kim DG, Jang MK, Nah JW, Carbohydr. Res., 343, 282 (2008)
  17. Cui L, Jia J, Guo Y, Liu Y, Zhu P, Carbohydr. Polym., 99, 31 (2014)
  18. Lejardi A, Hernandez R, Criado M, Santos JI, Etxeberria A, Sarasua JR, Mijangos C, Carbohydr. Polym., 103, 267 (2014)
  19. Suh JKF, Matthew HWT, Biomaterials, 21, 2589 (2000)
  20. Jang MK, Nah JW, J. Korean Ind. Eng. Chem., 19(5), 457 (2008)
  21. Nie W, Yuan X, Zhao J, Zhou Y, Bao H, Carbohydr. Polym., 96, 342 (2013)
  22. Lejardi A, Hernandez R, Criado M, Santos JI, Etxeberria A, Sarasua JR, Mijangos C, Carbohydr. Polym., 103, 267 (2014)
  23. Peng Y, Li J, Li J, Fei Y, Dong J, Pan W, Int. J. Pharm., 441, 482 (2013)
  24. Duhem N, Rolland J, Riva R, Guillet P, Schumers JM, Jerome C, Gohy JF, Preat V, Int. J. Pharm., 423, 452 (2012)
  25. Amin MCIM, Ahmad N, Halib N, Ahmad I, Carbohydr. Polym., 88, 465 (2012)
  26. Knight DK, Shapka SN, Amsden BG, J. Biomed. Mater. Res. Part A, 83, 787 (2007)
  27. Li Z, Kim YH, Min HS, Han CK, Huh KM, Macromol. Res., 18(6), 618 (2010)
  28. Jeong YI, Kim DG, Jang MK, Nah JW, Carbohydr. Polym., 343, 282 (2008)
  29. Park JC, Park BJ, Lee DH, Suh H, Kim DG, Kwon OH, Yonsei Med. J., 43, 518 (2002)
  30. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC, Pharmaceut. Res., 23, 2709 (2006)
  31. Ur-Rehman T, Tavelin1 S, Grobner G, Int. J. Pharm., 474, 19 (2011)