Macromolecular Research, Vol.24, No.3, 276-281, March, 2016
Development of a PP/carbon/CNT composite electrode for the zinc/bromine redox flow battery
E-mail:
A polypropylene electrode filled with carbon black, graphite, and carbon nanotubes (CNTs) was successfully prepared by sheet extrusion to serve as the bipolar plate for a zinc/bromine redox flow battery. The electrical conductivity, mechanical properties and charge-discharge performance of the carbon plastic composite electrode with various added amounts of CNTs for the zinc/bromine redox flow battery were investigated. The volume resistivity of the carbon plastic composite electrode was 1.12 Ocm when the CNT content was 5 wt%. The voltage efficiency (VE) and the energy efficiency (EE) of the cell stack with 5 wt% CNT were measured to be 80.7% and 73.2%, respectively, during charge-discharge cycling. In addition, the zinc/bromine redox flow battery equipped with the carbon plastic composite electrode with added CNTs had good mechanical strength and chemical stability.
Keywords:bipolar plate;carbon nanotube;carbon plastic composite;redox flow battery;volume resistivity
- Skyllas-Kazacos M, Rychccik M, Robins RG, Fane AG, Green MA, J. Electrochem. Soc., 133, 1057 (1986)
- Skyllas-Kazacos M, Kazacos G, Poon G, Verseema H, Int. J. Energy Res., 34(2), 182 (2010)
- Leung P, Li X, de Leon CP, Berlousis L, John CT, Walsh FC, RSC Adv., 2, 10125 (2012)
- Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M, Mustafa I, Arab. J. Sci. Eng., 38, 723 (2013)
- Kwak NS, Koo JS, Hwang TS, Macromol. Res., 20(2), 205 (2012)
- Kwak NS, Sim JB, Hwang TS, Macromol. Res., 21(9), 941 (2013)
- Sum E, Rychcik M, Skyllas-Kazacos M, J. Power Sources, 16, 85 (1985)
- Rychcik M, Skyllas-Kazacos M, J. Power Sources, 19, 45 (1987)
- Baek YM, Kwak NS, Hwang TS, Polymer, 35, 586 (2011)
- Jung JC, Kwak NS, Hwang TS, Polymer, 35, 593 (2011)
- Hoobin PM, Cathro KJ, Niere JO, J. Appl. Electrochem., 19, 943 (1989)
- Zhang LQ, Zhang HM, Lai QZ, Li XF, Cheng YH, J. Power Sources, 227, 41 (2013)
- Lai QZ, Zhang HM, Li XF, Zhang LQ, Cheng YH, J. Power Sources, 235, 1 (2013)
- Thaller LH, US Patent 3996064 (1975).
- Johnson DA, Reid MA, J. Electrochem. Soc., 132, 269 (1985)
- Cathro KJ, Cedzynska K, Constable DC, Hoobin PM, J. Power Sources, 18, 349 (1986)
- Zhong S, Kazacos M, Burford R, Skyllas-Kazacos M, J. Power Sources, 36, 29 (1991)
- Kuan HC, Ma CCM, Chen KH, Chen SM, J. Power Sources, 134(1), 7 (2004)
- Antunes RA, de Oliveira MCL, Ett G, Ett V, J. Power Sources, 196(6), 2945 (2011)
- Dweiri R, Sahari J, J. Power Sources, 171(2), 424 (2007)
- Lee DW, Ma S, Lee KY, Macromol. Res., 21(7), 767 (2013)
- Cho SM, Jung HT, Macromol. Res., 22(10), 1066 (2014)
- Song QS, Aravindaraj GK, Sultana H, Chan SLI, Electrochim. Acta, 53(4), 1890 (2007)
- Su FB, Zhao XS, Wang Y, Lee JY, Microporous Mesoporous Mater., 98, 323 (2007)
- Kim BS, Suh KD, Kim B, Macromol. Res., 16(1), 76 (2008)
- Sun Y, Bao HD, Guo ZX, Yu J, Macromolecules, 42(1), 459 (2009)
- Jee MH, Choi JU, Park SH, Jeong YG, Baik DH, Macromol. Res., 20(6), 650 (2012)
- Park HJ, Kim J, Seo Y, Shim J, Sung MY, Kwak S, Macromol. Res., 21(9), 965 (2013)
- Radhakrishnan S, Ramanujam BTS, Adhikari A, Sivaram S, J. Power Sources, 163(2), 702 (2007)
- Xu HP, Dang ZM, Jiang MJ, Yao SH, Bai J, J. Mater. Chem., 18, 229 (2007)
- Teng XG, Dai JC, Su J, Zhu YM, Liu HP, Song ZG, J. Power Sources, 240, 131 (2013)
- Bokobza L, Rahmani M, Belin C, Bruneel JL, El Bounia NE, J. Polym. Sci. B: Polym. Phys., 46(18), 1939 (2008)
- Wen M, Sun XJ, Su L, Shen JB, Li J, Guo SY, Polymer, 53(7), 1602 (2012)
- Garzon C, Palza H, Compos. Sci. Technol., 99, 117 (2014)