화학공학소재연구정보센터
Macromolecular Research, Vol.24, No.3, 276-281, March, 2016
Development of a PP/carbon/CNT composite electrode for the zinc/bromine redox flow battery
E-mail:
A polypropylene electrode filled with carbon black, graphite, and carbon nanotubes (CNTs) was successfully prepared by sheet extrusion to serve as the bipolar plate for a zinc/bromine redox flow battery. The electrical conductivity, mechanical properties and charge-discharge performance of the carbon plastic composite electrode with various added amounts of CNTs for the zinc/bromine redox flow battery were investigated. The volume resistivity of the carbon plastic composite electrode was 1.12 Ocm when the CNT content was 5 wt%. The voltage efficiency (VE) and the energy efficiency (EE) of the cell stack with 5 wt% CNT were measured to be 80.7% and 73.2%, respectively, during charge-discharge cycling. In addition, the zinc/bromine redox flow battery equipped with the carbon plastic composite electrode with added CNTs had good mechanical strength and chemical stability.
  1. Skyllas-Kazacos M, Rychccik M, Robins RG, Fane AG, Green MA, J. Electrochem. Soc., 133, 1057 (1986)
  2. Skyllas-Kazacos M, Kazacos G, Poon G, Verseema H, Int. J. Energy Res., 34(2), 182 (2010)
  3. Leung P, Li X, de Leon CP, Berlousis L, John CT, Walsh FC, RSC Adv., 2, 10125 (2012)
  4. Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M, Mustafa I, Arab. J. Sci. Eng., 38, 723 (2013)
  5. Kwak NS, Koo JS, Hwang TS, Macromol. Res., 20(2), 205 (2012)
  6. Kwak NS, Sim JB, Hwang TS, Macromol. Res., 21(9), 941 (2013)
  7. Sum E, Rychcik M, Skyllas-Kazacos M, J. Power Sources, 16, 85 (1985)
  8. Rychcik M, Skyllas-Kazacos M, J. Power Sources, 19, 45 (1987)
  9. Baek YM, Kwak NS, Hwang TS, Polymer, 35, 586 (2011)
  10. Jung JC, Kwak NS, Hwang TS, Polymer, 35, 593 (2011)
  11. Hoobin PM, Cathro KJ, Niere JO, J. Appl. Electrochem., 19, 943 (1989)
  12. Zhang LQ, Zhang HM, Lai QZ, Li XF, Cheng YH, J. Power Sources, 227, 41 (2013)
  13. Lai QZ, Zhang HM, Li XF, Zhang LQ, Cheng YH, J. Power Sources, 235, 1 (2013)
  14. Thaller LH, US Patent 3996064 (1975).
  15. Johnson DA, Reid MA, J. Electrochem. Soc., 132, 269 (1985)
  16. Cathro KJ, Cedzynska K, Constable DC, Hoobin PM, J. Power Sources, 18, 349 (1986)
  17. Zhong S, Kazacos M, Burford R, Skyllas-Kazacos M, J. Power Sources, 36, 29 (1991)
  18. Kuan HC, Ma CCM, Chen KH, Chen SM, J. Power Sources, 134(1), 7 (2004)
  19. Antunes RA, de Oliveira MCL, Ett G, Ett V, J. Power Sources, 196(6), 2945 (2011)
  20. Dweiri R, Sahari J, J. Power Sources, 171(2), 424 (2007)
  21. Lee DW, Ma S, Lee KY, Macromol. Res., 21(7), 767 (2013)
  22. Cho SM, Jung HT, Macromol. Res., 22(10), 1066 (2014)
  23. Song QS, Aravindaraj GK, Sultana H, Chan SLI, Electrochim. Acta, 53(4), 1890 (2007)
  24. Su FB, Zhao XS, Wang Y, Lee JY, Microporous Mesoporous Mater., 98, 323 (2007)
  25. Kim BS, Suh KD, Kim B, Macromol. Res., 16(1), 76 (2008)
  26. Sun Y, Bao HD, Guo ZX, Yu J, Macromolecules, 42(1), 459 (2009)
  27. Jee MH, Choi JU, Park SH, Jeong YG, Baik DH, Macromol. Res., 20(6), 650 (2012)
  28. Park HJ, Kim J, Seo Y, Shim J, Sung MY, Kwak S, Macromol. Res., 21(9), 965 (2013)
  29. Radhakrishnan S, Ramanujam BTS, Adhikari A, Sivaram S, J. Power Sources, 163(2), 702 (2007)
  30. Xu HP, Dang ZM, Jiang MJ, Yao SH, Bai J, J. Mater. Chem., 18, 229 (2007)
  31. Teng XG, Dai JC, Su J, Zhu YM, Liu HP, Song ZG, J. Power Sources, 240, 131 (2013)
  32. Bokobza L, Rahmani M, Belin C, Bruneel JL, El Bounia NE, J. Polym. Sci. B: Polym. Phys., 46(18), 1939 (2008)
  33. Wen M, Sun XJ, Su L, Shen JB, Li J, Guo SY, Polymer, 53(7), 1602 (2012)
  34. Garzon C, Palza H, Compos. Sci. Technol., 99, 117 (2014)