화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.35, 277-286, March, 2016
Arsenic removal from aqueous solutions by adsorption onto hydrous iron oxide-impregnated alginate beads
E-mail:
Hydrous iron oxide impregnated alginate beads were developed for effective arsenic removal from water. As(III) adsorption was maximized at neutral pH while As(V) adsorption was higher in acidic conditions. Adsorption efficiency for both As(III) and As(V) mostly increased with increasing iron loading, but As(V) adsorption slightly decreased at high iron loading. Phosphate showed a pronounced interfering effect, especially at high concentration. Kinetics data fitted to pseudo-second-order and intra-particle diffusion model suggested chemisorption and intra-particle diffusion might mainly govern As(III) and As(V) adsorption, respectively. Beads were regenerated using NaOH solution and successfully reused for multiple cycles.
  1. Clancy TM, Hayes KF, Raskin L, Environ. Sci. Technol., 47, 10799 (2013)
  2. WHO, Guidelines for Drinking Water Quality, fourth ed., World Health Organization, Geneva, 2011p. 315.
  3. Shankar S, Shanker U, Sci. World J., 304524, 1 (2014)
  4. UNICEF, Arsenic Contamination in Groundwater: Current Issues 2, The United Nations Children’s Fund, New York, NY, 2013.
  5. Jain CK, Singh RD, J. Environ. Manage., 107, 1 (2012)
  6. Mohan D, Pittman CU, J. Hazard. Mater., 142(1-2), 1 (2007)
  7. Petrusevski B, Sharma S, Schippers JC, Shordt K, Arsenic in drinking water, IRC International Water and Sanitation Centre, Delft, 2007.
  8. Giles DE, Mohapatra M, Issa TB, Anand S, Singh P, J. Environ. Manage., 92, 3011 (2011)
  9. Payne KB, Abdel-Fattah TM, J. Environ. Sci. Health, 40, 723 (2005)
  10. Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL, Sci. Technol. Adv. Mater., 8, 71 (2007)
  11. Trivedi P, Axe L, J. Colloid Interface Sci., 244(2), 221 (2001)
  12. Chung SG, Ryu JC, Song MK, An B, Kim SB, Lee SH, Choi JW, J. Hazard. Mater., 267, 161 (2014)
  13. Dixit S, Hering JG, Environ. Sci. Technol., 37, 4182 (2003)
  14. Chen B, Zhu ZL, Ma J, Yang MX, Hong J, Hu XH, Qiu YL, Chen JH, J. Colloid Interface Sci., 434, 9 (2014)
  15. Deliyanni E, Bandosz TJ, Matis KA, J. Chem. Technol. Biotechnol., 88(6), 1058 (2013)
  16. Gupta VK, Saini VK, Jain N, J. Colloid Interface Sci., 288(1), 55 (2005)
  17. Maji SK, Kao YH, Liu CW, Desalination, 280(1-3), 72 (2011)
  18. Cho K, Shin BY, Park HK, Cha BG, Kim J, RSC Adv., 4, 21777 (2014)
  19. Lv XS, Jiang GM, Xue XQ, Wu DL, Sheng TT, Sun C, Xu XH, J. Hazard. Mater., 262, 748 (2013)
  20. Cho DW, Jeon BH, Chon CM, Kim Y, Schwartz FW, Lee ES, Song H, Chem. Eng. J., 200, 654 (2012)
  21. Pan B, Qiu H, Pan B, Nie G, Xiao L, Lv L, Zhang W, Zhang Q, Zheng S, Water Res., 44, 815 (2010)
  22. Ocinski D, Jacukowici-Sobala I, Raczyk J, Kociolek-Balawejder E, React. Funct. Polym., 83, 24 (2014)
  23. Wilkie JA, Hering JG, Colloids Surf. A: Physicochem. Eng. Asp., 107, 97 (1996)
  24. Ho YS, Ng JCY, McKay G, Sep. Purif. Methods, 29(2), 189 (2000)
  25. Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
  26. Weber WJ, Morris JC, J. Sanitary Eng. Div., 89, 31 (1963)
  27. Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
  28. Freundlich HMF, Z. Phys. Chem., 57, 385 (1906)
  29. Tansel B, Nagarajan P, Adv. Environ. Res., 8, 411 (2004)
  30. Yang J, Zhang HW, Yu MH, Emmanuelawati I, Zou J, Yuan ZG, Yu CZ, Adv. Funct. Mater., 24(10), 1354 (2014)
  31. Lin HY, Chen YW, Wang WJ, J. Nanopart. Res., 7, 249 (2005)
  32. Lowell S, Shields JE, Thomas MA, Thommes M, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, Dordrecht, 2004p. 58.
  33. Peng C, Zhao Q, Gao C, Colloids Surf. A: Physicochem. Eng. Asp., 353, 132 (2010)
  34. Swedlund PJ, Holtkamp H, Song Y, Daughney CJ, Environ. Sci. Technol., 48, 2759 (2014)
  35. Dzombak DA, Morel FM, J. Colloid Interface Sci., 112, 588 (1986)
  36. Escudero C, Fiol N, Villaescusa I, Bollinger JC, J. Hazard. Mater., 164(2-3), 533 (2009)
  37. Stumm W, Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, Wiley-Interscience, New York, NY, 1992p. 43.
  38. Kim SO, Lee WC, Cho HG, Lee BT, Lee PK, Choi SH, Environ. Technol., 35, 251 (2014)
  39. Zhang G, Ren Z, Zhang X, Chen J, Water Res., 47, 4022 (2013)
  40. Raven KP, Jain A, Loeppert RH, Environ. Sci. Technol., 32, 344 (1998)
  41. Essington ME, Soil and Water Chemistry: An Integrative Approach, second ed., CRC Press, Boca Raton, FL, 2015.
  42. Cumbal L, SenGupta AK, Environ. Sci. Technol., 39, 6508 (2005)
  43. Sheng PX, Wee KH, Ting YP, Chen JP, Chem. Eng. J., 136(2-3), 156 (2008)
  44. Sverjensky DA, Fukushi K, Geochim. Cosmochim. Acta, 70, 3778 (2006)
  45. Lin S, Lu DN, Liu Z, Chem. Eng. J., 211, 46 (2012)
  46. Zeng H, Arashiro M, Giammar DE, Water Res., 42, 4629 (2008)
  47. Zhu HJ, Jia YF, Wu X, Wang H, J. Hazard. Mater., 172(2-3), 1591 (2009)
  48. Xu R, Jiang J, Cheng C, in: Xu J, Huang PM (Eds.), Effect of Ionic Strength on Specific Adsorption of Ions by Variable Charge Soils: Experimental Testification on the Adsorption Model of Bowden et al., Springer, Berlin, Heidelberg, 2010, p. 78.
  49. Goldberg S, Soil Sci. Soc. Am. J., 66, 413 (2002)
  50. McBride MB, Clay Clay Min., 45, 598 (1997)
  51. Xu R, Wang Y, Tiwari D, Wang H, J. Environ. Sci. (China), 21, 927 (2009)
  52. Wang J, Xu WH, Chen L, Huang XJ, Liu JH, Chem. Eng. J., 251, 25 (2014)
  53. Lu JB, Liu DF, Hao J, Zhang GW, Lu B, Chem. Eng. Res. Des., 93, 652 (2015)
  54. McDonald KJ, Brandon R, Reddy KJ, Sci. Rep., 5, 1 (2015)
  55. Sarkar S, Greenleaf JE, Gupta A, Ghosh D, Blaney LM, Bandyopadhyay P, Biswas RK, Dutta AK, SenGupta AK, Water Res., 44, 5813 (2010)
  56. Holl WH, Environ. Geochem. Health, 32, 287 (2010)