Desalination, Vol.366, 71-79, 2015
Raising forward osmosis brine concentration efficiency through flow rate optimization
An exergetic efficiency is defined in order to compare brine concentration processes including forward osmosis (FO) across a wide range of salinities. We find that existing FO pilot plants have lower efficiency than reverse osmosis plants in the brackish and seawater salinity ranges. High salinity FO, in its current form, is still less efficient than mechanical vapor compression. We show that efficiency is the product of FO exchanger and draw regenerator efficiencies, and therefore FO system energy efficiency benefits from improvements to both. The mass flow rate ratio (between draw and feed flow rates) is identified as a crucial parameter in the design of efficient FO systems because of its effect on exchanger efficiency. We demonstrate a method of thermodynamically balancing an FO system by choosing flow rates that lead to equal osmotic pressure differences at both ends of the exchanger, and show the method's potential to increase the efficiency of current systems by 3-21%. (C) 2014 Elsevier B.V. All rights reserved.
Keywords:FO;Energy consumption;Energy efficiency;Brine concentration;Thermodynamic balancing;High salinity