화학공학소재연구정보센터
Electrochimica Acta, Vol.172, 61-70, 2015
Graphene Nanosheets/Poly(3,4-ethylenedioxythiophene) Nanotubes Composite Materials for Electrochemical Biosensing Applications
In this study, we developed the novel composite materials containing reduced graphene oxide (rGO) nanosheets and poly(3,4-ethylenedioxythiophene) nanotubes (PEDOT NTs) for electrochemical biosensing applications. Transmission electron microscopy, scanning electron microscopy and atomic force microscopy suggested that the rGO nanosheets cover the substrate uniformly, and the PEDOT NTs act as a conducting bridge to connect the rGO sheets. By combining the two materials, it's expected to enhance the conductivity of the film and improve the surface coverage. We applied the rGO/PEDOT NTs composite for electrochemical detection of hydrazine and hydrogen peroxide; noticeable improvements in electrochemical activity and reactivity were observed compared to those of the pristine rGO and PEDOT NTs electrodes. This may be attributed to the better surface coverage of the rGO/PEDOT NTs modified electrode with superior conductivity. Furthermore, interference tests indicate that the rGO/PEDOT NTs composite film exhibits high selectivity toward the analyte. The rGO/PEDOT NTs composite thus provides a potential platform for biosensing applications. (C) 2015 Elsevier Ltd. All rights reserved.